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Abstract.
Continuum models of cerebral cortex with parameters derived from physiological data,
provide explanations of the cerebral rhythms, synchronous oscillation, and autonomous
cortical activity in the gamma frequency range, and suggest possible mechanisms for
dynamic self-organisation in the brain.
Dispersion relations and derivations of power spectral response for the models, show that
a low frequency resonant mode and associated travelling wave solutions of the models’
equations of state can account for the predominant 1/f spectral content of the
electroencephalogram (EEG). Large scale activity in the alpha, beta, and gamma bands, is
accounted for by thalamocortical interaction, under regulation by diffuse cortical
excitation. System impulse responses can be used to model Event-Related Potentials.
Further classes of local resonance may be generated by rapid negative feedbacks at active
synapses.
Activity in the gamma band around 40 Hz, associated with large amplitude oscillations of
pulse density, appears at higher levels of cortical activation, and is unstable unless
compensated by synaptic feedbacks. Control of cortical stability by synaptic feedbacks
offers a partial account of the regulation of autonomous activity within the cortex.
Synchronous oscillation occurs between concurrently excited cortical sites, and can be
explained by analysis of wave motion radiating from each of the co-active sites.
These models are suitable for the introduction of learning rules - most notably the
coherent infomax rule.

1. Introduction.
The operation of the brain requires the coordinated interplay of billions of neurones via
their synapto-dendritic couplings. The development of a concise mathematical
description of this interplay is a major goal of neuroscience, but attempts to attain this
goal encounter problems of a fundamental nature.
What are the essential cellular properties needed to account for the local cell pulse
characteristics, and the macroscopic fields (notably the electroencephalogram (EEG))
emitted by the working brain? How are the observable pulses and fields related to
information processing in the brain? Which are the essential features of the brain’s gross
anatomy which need to be taken into consideration? How do the dynamics of neurones
interact with growth and other plastic modifications, to enable adaptative learning?
Accounts of interactions within populations of neurones have generally utilised neural
network methods, in which the elementary units considered are the neurones (eg, Amit et
al 1990; Arbib et al 1998; Traub et al 1996; Whittington et al 1995; Lumer et al 1997a,b;
Wilson and Bower 1991). Despite their many virtues, such models are limited by the
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rapid increase in their numerical complexity as the scale and detail of simulation is
increased. This complexity also generally makes them unsuited to mathematical analysis.
This paper describes the current attempts being made by our group to account for the
dynamics of the brain in as simple a way as possible. We utilise continuum modelling
methods pioneered in the works of Freeman (1975), Wilson and Cowan (1973), Nunez
(1981, 1995) , Lopes da Silva (van Rotterdam et al 1982 and subsequent), Haken (eg,
Jirsa and Haken 1996), Zhadin (1994) and others. Our work has been guided also by the
following principles:
• We have attempted to fit all simulations and analyses within a simplified conception

of the brain’s overall organisation, with a view to achieving logically compatible
models of brain dynamics at all spatial scales.

• We assume that at microscopic scale neuronal interactions are highly nonlinear and
discrete, yet at macroscopic scale observable fields such as the EEG emanate from a
stochastic and essentially linear continuum. (Wright 1990; Wright and Liley 1996).
This means that well established linear methods can be used to aid analysis of
properties often initially demonstrated by numerical simulations.

• Parameters (dendritic time constants, synaptic densities, etc.) compatible with
independent physiological estimates (eg, Braitenberg and Schuz 1991, Thomson et al
1996, Thomson1997, Liley and Wright 1994, Rennie et al 2000a) are used to constrain
model fitting to experimental data.

2. A simplified concept of brain organisation.
Figure 1 shows the basic aspects of the brain’s operation we seek to analyse.
Three principal scales of organisation need to be considered.
Firstly, at the microscopic scale in any locale of cortex, local interactions between a
mixed population of excitatory and inhibitory cells take place. Interactions are largely
mediated by fast neurotransmitters. The existence of synaptic and dendritic delays, and
synapto-dendritic feedbacks, means that local oscillations of mean dendritic potential and
pulse density are likely in response to any perturbation. The properties of such local
oscillation determine the signal transfer characteristics and attractor dynamics exhibited
by local neural networks.
Secondly, at a scale from fractions of a millimeter to many centimeters of cortex, patches
of active cells have been experimentally observed to enter into synchronous oscillation .
That is, cross-correlations of pulse density, or of mean local field potential at the
separated locii are maximal at zero lag. This phenomena has been widely, although
controversially, considered to act as a substrate for association processes in the cortex.
(eg, Eckhorn et al 1998; Singer 1994; Singer and Gray 1995; Stryker 1989; Bressler et al
1993; Livingston 1996; Miltner et al 1999; Neuenschwander and Singer 1996; Palm and
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Wennekers 1997; Steriade et al 1996; Gray and Singer 1989; Gray et al 1989). Such
interactions depend particularly upon excitatory cortico-cortical fibres of medium to large
scale.
Thirdly, at the scale of the whole brain, the total cortical system interacts with the
subcortical systems. These interactions include reciprocal interactions of thalamus and
cortex, and limbic and cortical projections to the basal ganglia and elsewhere. These
descending pathways ultimately exert return controls via the reticular arousal system and
related fibres, back upon the cortex (eg Steriade et al 1990; Alexander et al 1990; Posner
and Petersen 1990). By these means the cortex is capable of self-control of both its mean
level of activity (cortical arousal) and spatial pattern of activity (an aspect of attention),
as indirectly observed experimentally (eg, Gevins et al 1983; Munk et al 1996; John et al
1969; Walter et al 1967; Xu et al 1997).

3. State equations
Figure 2 summarises the elementary physiological properties considered basic in our
recent models, and their mathematical expression (Robinson et al 1997, 1998a,b; Rennie
et al 1999, 2000a; Wright 1999; Wright et al 2000). A field of mixed excitatory and
inhibitory neurones are considered as a continuum approximating the cortex in two
dimensions. The control parameter for cortical activity is the diffuse excitation delivered
by the reticular formation of the brain stem.
The response of dendritic membranes to synaptic inputs is nonlinear, because of the
influences of reversal potentials, Rqp. Thus the gross post synaptic potential (PSP size) is
a function of afferent synaptic inputs, modified by reversal potentials and further synaptic
feedback processes, which may be included in the term H(t). The time course of average
dendritic potentials (the PSP shape, as measured at the neuronal soma) is modelled by a
biexponential function with fixed time constants, alpha and beta. Mean soma potential, V,
(considered linearly proportional to the population local field potential) is related to mean
efferent pulse rate, Q, by a sigmoidal function which takes its form from the distribution
of cell action potential thresholds. The propagation of action potentials in the continuum
of surrounding neurones is expressed as a linear wave equation, which relates afferent
and efferent pulses in time and space, and a spatial damping term, gamma. Gamma is
determined by the velocity of axonal conduction and the geometry of axonal projections.
Inhibitory cells we have for the most part considered as wholly local in their action, with
long range cortical interactions occurring by excitatory connections.
To these basic state equations we have subsequently added consideration of co-resonance
of cortex with the thalamic system (Robinson et al 2000), and more complex feedback
processes operating at synaptic level, as will be discussed in later sections.
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The basic state equations enable direct calculation of steady state fixed points for the
system, dispersion relations for the medium, and the power spectrum of local field
potential (EEG) in response to white noise inputs. They also permit simulation of an
extended field of cortex, enabling inspection of time series and spatial properties of
activity in the medium.

4. Parameters
Table 1 lists the basic parameters of the state equations, with current values applied in our
work. Values for these parameters have been obtained largely from the work of
Braitenberg and Schuz, Thomson et al, Liley and Wright, and Rennie et al, cited in the
introduction.
There is some sensitivity of emergent system properties, even with parameter variation
within the approximate physiological range. To aid in melding cellular physiological
parameters with experimental observations on EEG, we have partly relied upon initial
numerical simulations with a nondimensional model (eg,Wright 1999) and partly upon
analytical explorations of the basic state equations (Robinson et al 1998a; Rennie et al
1999) Parameters have been subsequently set with some “tuning” within the
physiological range, so as to better fit observed EEG frequencies, etc (Rennie et al
2000a).

5. Microscopic dynamics
Figure 3 shows the roots of dispersion relations calculated from our basic state equations,
with the parameter values listed in table 1 (Rennie et al 2000a). Dispersion relations
encapsulate the system’s favoured modes of resonance when driven by white noise
inputs, and thus act as an analytic adjunct to numerical simulations. Resonance occurs at
specific combinations of frequency and wavenumber. Frequency of resonance (omega) is
measured by the horizontal distance of a root from the origin. Temporal damping is
estimated by the value on the imaginary axis. Shown here are only those roots which are
relatively lightly damped. For each root the squares show the resonance associated with a
wavenumber (k) of zero, and the tails indicate the root values as wavenumber increases.
The two cases shown are those obtained for relatively low (10/s) and relatively high
(350/s) input pulse rates of cortical activation delivered by the nonspecific reticular
activation system.
Two relatively lightly damped roots are apparent – a low frequency resonance at k=0,
which is also associated with a travelling wave system, and a high frequency resonance
which becomes less damped as cortical activation is increased, until it becomes unstable,
as indicated by the root's placement  above the horizontal (real) axis.
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These two roots give rise to spectral content of 1/f character, and activity associated with
a sharp spectral peak in the gamma range (around 40Hz +), respectively.
The occurrence of a potentially unstable root in the gamma range immediately suggests a
basis for autonomous cortical activity at this frequency range. This is in keeping with the
many experiments on synchronous oscillation cited in section 2, which reveal powerful
local pulse and local field potential oscillations around this frequency, during processing
of inputs.
Obviously, sustained unstable activity as illustrated in figure 3, is unphysiological. For
this reason we are presently modifying the basic state equations to include negative
feedbacks at synaptic junctions. Table 2 lists some of the more prominent of the factors
known to modify synaptic neurotransmission. Of particular importance in this context are
the fast feedbacks, operating in the 1-5 ms time range. These complement the fast
negative feedback actions induced by membrane reversal potentials. Probably the
dominant fast effect of this type arises from the post-synaptic activation and deactivation
of glutamate receptors (eg, Tones and Westbrook 1996).
When fast negative feedbacks are introduced to the basic state equations, two major
influences on system dynamics are apparent.
Firstly, synaptic feedbacks can introduce local resonances. Figure 4 shows time series
and power spectra associated with increasing cortical activation in the presence of one
kind of fast inhibitory feedback. Similar patterns of resonance also arise when strong
negative feedback is present at excitatory synapses. It can be seen that as cortical
activation increases (down figure 4) EEG-like activity appears which exhibits multiple
peaks in the power spectrum, progressively moving to higher frequencies, approximately
imitating activity in the the theta, alpha, beta, and gamma bands. At sufficiently high
cortical activation runaway unstable activity, in the 40 Hz range, appears. These results
were obtained from our non-dimensional model (Wright 1999). The values of the
parameters in this version have been tuned to optimise the resemblance to EEG. Although
preliminary, these results serve to show that rapid synaptic feedbacks enhance local
resonances not apparent as lightly damped roots in the basic state equations. Thus
resonances in the EEG range, including resonances near the frequencies of the great
cerebral rhythms, may arise locally within the cortex, as a consequence of synaptic
feedbacks. As will be discussed in section 7 the major cerebral rhythms can be
quantitatively well accounted for at macroscopic scale, by cortico-thalamic mechanisms.
There is thus no need to appeal to local cortical low-frequency resonances, to account for
macroscopic EEG in the sub-gamma range. But co-resonance of microscopic and
macroscopic neuronal fields is an implied mechanism for interaction between scales, in
our models.



7

Secondly, sufficiently strong negative feedback operating at excitatory synapses, or
positive feedback at inhibitory synapses, or various combinations, can act as a time-
varying control upon otherwise unstable resonance in the gamma range. With appropriate
choice of the time constants of these feedbacks, autonomous generation of activity
develops, yet remains locally controlled at pulse rates within the physiological range.
To illustrate the impact of this feedback control, figure 5 shows snapshots from a small
scale cortical simulation which includes first approximations to these strong synaptic
feedbacks. The continuous emergent activity invites comparison to the dynamics within
the gamma range of spontaneously firing pools of neurones, in which bursting patterns of
action potentials are observed. Chaotic and limit cycle types of activity may be present
within various basins of attraction, but as of yet little work on their classification has been
undertaken. In contrast, at lower levels of cortical activation, only point attractors are
present.

6. Synchronous oscillation – mesoscopic interactions at longer range.
During the development of these simulations it became apparent that synchronous
oscillation, with close analogy to that observed physiologically appeared as a property of
the simulations without any additional assumptions (Wright 1997a). We have since
developed analytical and numerical treatments of zero-lag cross correlation (Robinson et
al 1998a, Chapman et al 2000), and matched the phenomenon we observe to some
physiological results (Wright et al 2000). The following account of synchronous
oscillation applies to all frequencies, but, as is the case in physiological experiments,
large oscillations in the gamma band, at about 40 Hz, are associated with the largest
amplitudes, and occur when the cortex is excited by higher levels of input.
If two points on the simulated cortical surface are driven by separate, completely
uncorrelated, inputs (or if uncorrelated autonomous local cortical activity emerges at two
separated points) then, within a few milliseconds cross-correlated activity, maximal at
zero lag, appears in the neighbourhood of both active sites. For this effect to occur, the
two points must be relatively strongly coupled, and axonal delay must be small compared
to the rise and fall time of the dendritic response. The speed of onset depends mainly on
the axonal delay. This effect does not depend upon system nonlinearity , as is frequently
assumed by those familiar with stochastic resonance in other situations. It is instead
associated with linear wave transmission in the simulated cortex.
Figure 6 sums up our current understanding of the mechanism of synchronous oscillation.
In the top frames of figure 6 it can be seen how a large field of zero-lag synchrony
surrounds both sites of uncorrelated input. In the middle frames eigenmode
decomposition shows that the first eigenmode of the wave activity radiating from both
driven sites is predominant, and this eigenmode defines the field of synchrony. The
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bottom frames attempt to convey the essence of the physical process, and can be
explained as follows:
The uncorrelated inputs can be decomposed into their even and odd components –
roughly, the parts of each driving signal which are in phase with the other, and those parts
of reversed phase. Wave activity radiates from both sites as outwardly propagating,
dissipative, linear waves, creating a small local field of “self-synchrony” about each site,
by the summation of signals transmitted by pathways of similar lag. The travelling waves
obey simple superposition rules subject to dissipation - but interactions of afferent signals
at summing junctions (dendrites) in the surrounding field dissipate even and odd
components in their inputs selectively. Even components reinforce one another, while
odd components tend to cancel about the signal mean. Thus, in the field of both driven
sites, the activity induced by the even components in the driving signals dominates, and a
field of zero-lag correlated activity emerges as the first eigenmode of the wave activity. It
can be shown that the magnitude of this zero-lag correlated field is sensitive to dendritic
delay time, axonal conduction lag between sites, and the relative strengths of couplings in
the field.
Figure 7 gives an example of how the results produced in simulation can be made to
qualitatively reproduce those seen in physiological experiments on synchronous
oscillation (Wright et al 2000). Cross-correlation of pulses from a pair of recording sites
is greatest when the stimulus is a single large bar, next for two smaller bars moving in the
same direction, and least for smaller bars moving in opposite directions. We believe the
match to experimental data might be rendered quantitatively precise if relative coupling
strengths, coherence within signals in the input pathways, and strengths of overlying
noise, were more closely matched between simulation and experiment.

7. The macroscopic EEG field. A thalamo-cortical resonance model.
When spectral responses of the simulations applied in figures 4 and 5 are compared to the
spectral content of the macroscopic EEG, the simulations prove to be inadequate with
regard to both relative amplitude and width of spectral peaks. A purely cortical account
ignores the role long ascribed to thalamic sources in generation of the EEG – to which
other models of the alpha rhythm have been directed – notably that of van Rotterdam et al
(1982). On the other hand no models attempting to account for the origin of the cerebral
rhythms have been able at the same time to account for the predominant background 1/f
spectral content of EEG and magnetoencephalogram (Novikov et al 1997).
It turns out that the addition of a simple feedback loop to the basic state equations, while
retaining parameters close to those listed in table 1, gives a good account of the entire
macroscopic EEG spectrum over low to high levels of cortical activation (Robinson et al
2000). The loop time required is consistent with an interaction between cortex and a
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subcortical system (assumed to be the thalamus) with a synapto-dendritic delay
appropriate for 1-2 synapses. The background 1/f^1 spectral content of EEG at low
frequencies, with a “knee” around 15 Hz above which power decays as 1/f^5, is well
accounted for by the low frequency root system, similar to that seen in figure 3. The
thalamocortical resonance then accounts for the occurrence of spectral peaks at the alpha,
beta, and gamma ranges, as shown in figure 8. These resonances are associated with low
wavenumbers and can be thought of as global resonances, as opposed to the local
resonances associated with fast synaptic feedback described in section 5.
We have found that the spectral progression with increasing cortical activation is well
fitted by this model, for all experimental data obtained over a wide variety of states of
cortical activation, from sleep to high alerting. These results will be later reported
(Robinson et al, in preparation).
Finally it can be observed that the thalamocortical spectral model also permits the
simulation of the cortical event related potential (ERP), by treating the ERP as the
cortical impulse response to brief sensory stimuli, with subsequent modulations imposed
by the cortex upon the cortico-thalamic resonance (Rennie et al 2000b). Examples are
shown in figure 9. These serve to emphasise that a fuller account of cortical dynamics
must take into account interactions of cortex with subcortical systems, over a multitude of
pathways.

8. Some wider implications.
The classes of dynamics seen in our models suggest the prospect of a future unification of
brain dynamic models with some aspects of computational and information-theoretic
approaches to understanding brain function.
* “Edge of chaos” and universal computation, versus locally autonomous firing and
synchronous oscillations in the gamma range.
In several controversial papers Langton (1986, 1990) has drawn upon the work of
Wolfram (1984) and von Neumann (1949) to propose that physical systems undergoing
local second-order phase transitions may include universal computation as a potential
property. Such systems exhibit prolonged transitional states, and have been termed “edge
of chaos”. Langton has suggested the brain may exploit the “edge of chaos” to achieve
cognition, in ways he has not stated in physiological terms. In conformity with this
suggestion, local phase transitions in the gamma band are implied by our findings. With
these local transitions stabilised in the large by rapid synaptic feedbacks and/or adiabatic
actions of slower neurotransmitters and polysynaptic cortical-subcortical interactions, the
regulation of cerebral phase transitions on all spatio-temporal scales is implicit.
* Cortical dynamics, coherent infomax and storage of information in cortical networks.
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Kay and Phillips (1997) and Phillips and Singer (1997) have described a learning rule
related to the Hebb principle, which they believe is physiologically realistic and which
exploits the occurrence in the brain of synchronous oscillation. Synchrony between
separate sites of input in an abstract passive-filter neural network is imposed by assuming
the existence of hypothetical “Contextual Field” (CF) fibres. The learning rule operates to
maximise the storage in synaptic connections, of relations among the information streams
introduced at separate “Receptor Field” (RF) sites of input. This information storage
principle they term “coherent infomax”. The physiological validity of the learning rule
seems further confirmed by its application to learning of connectivity in models of
cortical anatomy (Alexander et al 2000) where we have found this rule more efficient
than simpler Hebb formulations in generating realistic visual cortex connectivities. In
these simulations of cortical connectivity we have shown that the learning rule results in a
mapping of the visual field onto cortex such that the visual field becomes tiled with small
homotypic maps of the visual field – each tile about the size of a macrocolumn. This
property may explain the way that contextual information is introduced into local cortical
information processing (Phillips and Singer 1997; Phillips and Pflieger 1999).
Our account of the mechanism of synchronous oscillation appears to obviate the need for
the special assumption of CF connections giving rise to synchrony. It can be shown that
our model of synchrony can account for the transfer of information about stimulus
properties to synapses distributed widely in the cortical field (Wright et al 2000). Further,
as indicated in another paper in the Agora Symposium, the 1/f background activity of the
less excited cortex may enable optimum information transfer among the active cortical
sites, in accord with the coherent infomax requirement that passive-filter information
transfer take place between active RF sites.
There appears to be no reason why the coherent infomax principle might not include the
extraction of informational relations among activity patterns in autonomously active
patches of cortex, as well as among discrete external sources of input. (Wright 1997b).
That is, locally autonomous, “edge of chaos”, attractor dynamics would give rise to an
internal type of RF input. These internal RF inputs, and RF inputs from sensory
pathways, linked into fields of coherent oscillation by the cortical wave medium would
act to store informational relations between RF’s of both internal and external origins.
Applying these considerations to an imaginary organism interacting with an environment,
the coherent infomax rule would thus allow association of environmental stimuli with the
organism’s internally generated cognitive and motor activity. As the organism’s motor
activity, sensory and cognitive activity would all bring about rewarding and punishing
reinforcement influences mediated by hard-wired, survival selected, subcortical systems
(eg Olds and Milner1954), we may conjecture that adaptive learning could result. This
conjecture depends upon the further assumption that the reward and punishment systems
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act to preferentially select the synaptic storage of information over appropriate time
scales.

9. Conclusion
It appears that a relatively simple set of state equations with parameter values close to
those determined by independent physiological measurements, accounts for observed
dynamics of cortical neurones at microscopic, mesoscopic and macroscopic scales. At
microscopic level, fast synaptic feedbacks appear to be crucial to the stability of the
excited cortex. At mesoscopic scale interactions via dissipative wave transmission
between excited cortical areas create fields of synchrony, and at macroscopic scale low-
frequency resonances and travelling waves generate the 1/f background spectrum of the
cortex. When this intracortical dynamic is supplemented by resonance between cortex
and thalamus, much of the spectral content of the EEG is accounted for.
The emerging picture of cerebral dynamic organisation is different to that envisaged in
alternate models – notably those of Nunez (1981) – and much may be gained by future
experimental comparison of competing formulations. Our models are testable in a
number of ways – for example, we predict dependence upon brain size, axonal
conduction velocity and dendritic delays, of the “knee” frequency between 1/f and 1/f^5
limbs of the background spectrum.
The present work offers the prospect that dynamical brain events taking place across a
wide range of scales might be unified within a single account. It also offers the more
remote prospect of unification of dynamics with specific learning rules. Whether such a
unified account is truly possible should be revealed as progressively greater anatomical
and physiological detail, and more exact specifications of parameters are included. As
indicated in the text, at the time of writing we are attempting several lines of development
of this kind. These include simulations with more realistic anisotropic cortical
connectivity at macroscopic and microscopic scales, the simulation of cortical evoked
potentials and the improved specification of synaptic feedback mechanisms.



12

References.

Alexander, D.M., Bourke, P.D., Sheridan, P., Konstandatos, O., Wright, J.J. 2000.
Emergence under Hebbian learning of local maps in the primary visual cortex:
Orientation Preference in the Tree Shrew. (in preparation)

Alexander, G.E., Crutcher, M.D., DeLong, M.R. 1990. Basal ganglia-thalamocortical
circuits: parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions.
In: Uylings, H.B.M., van Eden, C.G., de Bruin, J.P.C., Feenstra, M.G.P. (Eds.), Progress
in Brain Research. Elsevier, Amsterdam.

Amit, D.J., Evans, M.R., Abeles, M. 1990. Attractor neural networks with biological
probe records. Network 1, 381-405.

Arbib, M.A., Erdi, P., Szentagothai, J. 1998. Neural Organisation: Structure, Function
and Dynamics. MIT Press, Cambridge Mass., London.

Braitenberg, V., Schuz, A.1991. Anatomy of the Cortex: Statistics and Geometry.
Springer, Berlin.

Bressler, S.L., Coppola, R., Nakamura, R. 1993. Episodic multiregional cortical
coherence at multiple frequencies during visual task performance. Nature 366,153-156.

Chapman, C.L., Bourke, P.D., Wright, J.J. 2000. Spatial eigenmodes and synchronous
oscillation: coincidence detection in simulated cerebral cortex. (submitted)

Eckhorn, R., Bauer, B., Jordon, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J.
1988. Coherent oscillation: a mechanism of feature linking in visual cortex? Biol.
Cybern. 60,121-130.

Freeman, W.J. 1975. Mass Action in the Nervous System. Academic Press, New York.

Gevins, A.S., Schaffer, R.E., Doyle, J.C., Cuttilo, B.A., Tannehill, R.S., Bressler, S.L.
1983. Shadows of thought: shifting lateralisation of human brain electrical patterns
during a brief visuomotor task. Science 220, 97-99.

Gray, C.M., Singer, W. 1989. Stimulus-specific neuronal oscillations in orientation
columns of cat visual cortex. Proc. Natn. Acad. Sci. 86, 1698-1702.



13

Gray, C.M., Konig, P., Engel, A.K., Singer, W. 1989. Oscillatory responses in cat visual
cortex exhibit intercolumnar synchronisation which reflects global stimulus properties.
Nature 388, 334-337.

Jirsa, V.K., Haken, H. 1996. Field theory of electromagnetic brain activity. Physical
Review Letters 77, 960-963.

John, E.R., Shimokochi, M., Bartlett, F. 1969. Neural readout from memory during
generalisation. Science 164, 1534-1536.

Kay, J. , Phillips, W.A. 1997. Activation functions, computational goals and learning
rules for local processors with contextual guidance. Neural Computation 9,763-768.

Langton, C.D. 1986. Studying artificial life with cellular automata. Physica D 22, 120-
149.

Langton, CD. 1990. Computation at the edge of chaos: phase transitions and emergent
computation. Physica D 42, 12-37.

Liley, D.T.J., Wright, J.J. 1994. Intracortical connectivity of pyramidal and stellate cells:
estimates of synaptic densities and coupling symmetry. Network 5, 175-189.

Livingstone, M.S. 1996. Oscillatory firing and interneuronal correlations in squirrel
monkey striate cortex. J. Neurophysiol. 75, 2467-2485.

Lumer, E.D., Edelman, G.M., Tononi, G. 1997a. Neural dynamics in a model of the
thalamocortical system. I. Layers, loops, and the emergence of fast synchronous rhythms.
Cerebral Cortex 7, 207-227.

Lumer, E.D., Edelman, G.M., Tononi, G. 1997b. Neural dynamics in a model of the
thalamocortical system. II. The role of neural synchrony tested through perturbations of
spike timing. Cerebral Cortex 7, 228-236.

Miltner, W.H., Braun, C., Arnold, M,, Witte, H., Taube, E. 1999. Coherence of gamma-
band EEG activity as a basis for associative learning. Nature 397, 434-436.



14

Munk, M.H.J., Roelfsema, P.R., Konig, P., Engel, A.K., Singer, W. 1996. Role of
reticular activation in the modulation of intracortical synchronisation. Science 272, 271-
273.

Neuenschwander S., Singer, W. 1996. Long range synchronisation of oscillatory light
responses in the cat retina and lateral geniculate nucleus. Nature 379, 728-733.

von Neumann, J. 1949. Theory of self-reproducing automata. In: A.W. Burkes (Ed.)
University of Illinois Lectures on the Theory and Organisation of Complicated Automata.
University of Illinois Press, Urbana, Il. 1966.

Novikov, E., Novikov, A., Shannahof-Khalsa, D., Schwartz, B., Wright, J. 1997. Scale-
similar activity in the brain. Physical Review E 56, R2387- R2389.

Nunez, P.L. 1981. Electric Fields of the Brain. Oxford University Press.New York.

Nunez, P.L 1995. Neocortical Dynamics and Human EEG Rhythms. Oxford University
Press, New York.

Olds, J., Milner, P. 1954. Positive reinforcement produced by electrical stimulation of the
septal area and other regions of the rat brain. J. Comp. Physiol. Psychol. 47, 419-427.

Palm, G., Wennekers, T. 1997. Synchronicity and its use in the brain. Behavioral and
Brain Sciences 20, 695-696.

Phillips, W.A., Singer, W. 1997. In search of common foundations for cortical
computation. Behavioral and Brain Sciences 20, 657-722.

Phillips, W.A., Pflieger, M.E. 1999. EEG studies of interactions that coordinate cortical
activity. In: T. Nakada (ed.) Human Higher Function I: Advanced methodologies. Smith-
Gordon/Nishuma.

Posner, M.I., Petersen, S.E. 1990. The attention system of the human brain. Annual
Review of Neuroscience 13, 25-42.

Rennie, C.J., Robinson, P.A., Wright, J.J. 1999. Effects of local feedback on dispersion
of electrical waves in the cerebral cortex. Physical Review E. 59, 3320-3329.



15

Rennie, C.J., Wright, J.J., Robinson, P.A. 2000a. Mechanisms of cortical electrical
activity and the emergence of gamma rhythm. J. Theoretical. Biol., (in press)

Rennie, C.J., Robinson, P.A., Wright, J.J. 2000b. Mechanisms for modelling of evoked
potentials in the brain. (in preparation)

Robinson, P.A., Rennie, C.J., Wright, J.J. 1997. Propagation and Stability of Waves of
Electrical Activity in the Cerebral Cortex. Physical Review E. 56, 826-840.

Robinson, P.A., Wright, J.J., Rennie, C.J. 1998a. Synchronous Oscillations in the
Cerebral Cortex. Physical Review E. 57, 4578-4588.

Robinson, P.A., Rennie, C.J., Wright, J.J., Bourke, P.D. 1998b. Steady states and global
dynamics of electrical activity in the cerebral cortex. Physical Review E 58, 3557-3571.

Robinson, P.A., Rennie, C.J., Wright, J.J., Gordon, E., Bahramali, H. 2000. Direct
prediction of EEG spectra from physiology. (submitted)

Robinson, P.A., Rennie, C.J., Wright, J.J., Gordon, E. Neurophysiological prediction of
electroencephalographic spectra in sleeping and waking states. (in preparation)

van Rotterdam, A., Lopes da Silva, F.H., van den Ende, J., Viergever, M.A., Hermans,
A.J. 1982. A model of the spatio-temporal characteristics of the alpha rhythm. Bulletin of
Mathematical Biology 44, 283-305.

Singer, W. 1994. Putative functions of temporal correlations in neocortical processing.
In: Koch C. and Davis JL (Eds.) Large Scale Neuronal Theories of the Brain. MIT Press,
Cambridge Mass., London.

Singer, W., Gray, C.M. 1995. Visual feature integration and the temporal correlation
hypothesis. Annu. Rev. Neurosci. 18, 555-586.

Steriade, M., Gloor, P., Llinas, R.R., Lopes da Silva, F.H., Mesulam, M.M. 1990. Basic
mechanisms of cerebral rhythmic activities. Electroenceph. clin. neurophysiol. 76, 481-
508.



16

Steriade, M., Amzica, F., Contreras, D. 1996. Synchronisation of fast (30-40 Hz)
spontaneous cortical rhythms during brain activation. Journal of Neuroscience 16, 392-
417.

Stryker, M.P. 1989. Is grandmother an oscillation? Nature 388, 297-298.

Thomson, A.M. 1997. Activity dependent properties of synaptic transmission at two
classes of connections made by rat neocortical pyramidal neurons in vitro. J. Physiol.
502, 131-147.

Thomson, A.M., West, D.C., Hahn, J., Deuchars, J. 1996. Single axon IPSP's elicited in
pyramidal cells by three classes of interneurones in slices of rat neocortex. J. Physiol.
496, 81-102.

Tones, M.V., Westbrook, G.L. 1996. The impact of receptor desensitization on fast
synaptic transmission. Trends in Neuroscience 19, 96-101.

Traub, R.D., Whittington, M.A., Stanford, I.M., Jeffereys, J.G.R. 1996. A mechanism for
generation of long range synchronous fast oscillations in the cortex. Nature 383, 621-624.

Walter, D.O., Kado, B.S., Rhodes, J.M., Adey, W.R. 1967. Electroencephalographic
baselines in astronaut candidates estimated by computation and pattern recognition
techniques. Aerospace Medicine 38, 371-379.

Whittington, M.A., Traub, R.D., Jefferys, J.G.R. 1995. Synchronised oscillations in
interneuron networks driven by metabotropic glutamate receptor activation. Nature 373,
612-615.

Wilson, M.A., Bower, J.M. 1991. A computer simulation of oscillatory behaviour in
primary visual cortex. Neural Computation 3, 498-509.

Wilson, H.R., Cowan, J.D. 1973. A mathematical theory of the functional dynamics of
cortical and thalamic nervous tissue. Kybernetik 13, 55-80.

Wolfram, S. 1984. Universality and complexity in cellular automata. Physica D 10, 1-35.

Wright, J.J. 1990. Reticular activation and the dynamics of neuronal networks. Biol.
Cybern. 62, 289-298.



17

Wright, J.J., Liley, D.T.J. 1996. Dynamics of the brain at global and microscopic scales.
Neural networks and the EEG. Behavioral and Brain Sciences 19, 285-320.

Wright ,J.J. 1997a. EEG simulation: variation of spectral envelope, pulse synchrony and
approx. 40Hz oscillation. Biol. Cybern. 76,181-194.

Wright, J.J. 1997b. Local attractor dynamics will introduce further information to
synchronous neuronal fields. Behavioural and Brain Sciences 20, 701-702.

Wright, J.J. 1999. Simulation of EEG: Dynamic changes in synaptic efficacy, cerebral
rhythms, and dissipative and generative activity in cortex. Biological Cybernetics 81,131-
147.

Wright, J.J., Bourke, P.D., Chapman, C.L. 2000. Synchronous oscillation in the cerebral
cortex and object coherence: simulation of basic electrophysiological findings. Biological
Cybernetics (in press)

Xu, J.H., Liu, Z.R., Liu, R., Yang, Q.F. 1997. Information transmission in human
cerebral cortex. Physica D 106, 363-374.

Zhadin, M.N. 1994. Formation of rhythmic processes in the bioelectrical activity of the
cerebral cortex. Biophysics 39, 133-150.



18

Figure 1
The top left panel of figure 1 shows two representative cells within the cerebral

cortex - one red (an excitatory “pyramidal” cell) and one blue (an inhibitory “ stellate”
cell). Populations of these cells are linked together densely in the cerebral cortex. Top
right panel shows the gamma band local oscillation which emerges when the locale of
cells becomes sufficiently excited.

The middle panels of figure 1 show how at a larger scale, these foci of excited
cortex generate waves of cortical electrical activity spreading into the less excited
surrounding cortical tissue (middle left panel). The resulting wave activity can be
analysed by cross-correlation, as shown in the middle right panel. Here the lag time for
maximally correlated activity (with reference to the recording site shown in the left
middle panel) is displayed for the extended field. It is seen that the foci of activity have
entered “synchronous oscillation”

The lower panels in figure 1 show the overall brain, and EEG activity as
generated in simulations - from low frequency “theta” activity, through the alpha, beta
and gamma ranges, to 40Hz. These progressive changes in frequency content reflect the
overall level of cortical excitation. At the highest levels of excitation, the self-excited
cortical state described in the top panels has been reached.

Figure 2
 Basic physiological and mathematical considerations, and descriptions of symbols. The
subscripts p and q are used to indicate interactions, and may be specified as occuring
between excitatory (e) or inhibitory (i) cells by substitution for q,p. The superscript (o)
indicates a parameter value is determined at the reference potential. The vector r indicates
cortical position, and t is time.

Table 1.
Anatomical and physiological parameter values.

Figure 3.
Roots of dispersion relations for the cortical model with parameters in table 1.
See text for further description.
Left hand graph – roots with relatively low cortical activation.
Right hand graph – system roots with high cortical activation.

Table 2.
An incomplete list of synaptic feedback mechanisms.
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Figure 4.
Time series and power spectra of a simulation with parameters approximating

(but not identical to) those represented in figure 3, and with the addition of strong
synaptic feedbacks. Cortical activation (associated with the control parameter Qns)
increases as the page is descended.

Figure 5
Freeze-frame snapshots of surface electrocortical potential from a simulation

operating at high cortical activation, under the constraint of powerful, fast, synaptic
feedbacks. Frames are separated by approximately 10 ms, and scales are normalised
units. The upper, folded, surfaces show the spatial conformation of local field potentials,
with increasing membrane depolarisation associated with the upward direction. The
shading on this surface is present merely to enhance the visual form of the contour. The
underlying flat surfaces show concurrent pulse density, and here the darker shading
indicates higher pulse density, associated with greater mean membrane depolarisation.
Other than an initiating impulse of spatio-temporal white noise, there is no random
driving. The activity is self-sustaining.

Figure 6.
A simulated cortical field driven by uncorrelated white noise inputs at two sites on the
cortical surface. Top: Sites of input shown by white squares. Cross-correlations and
delays, with respect to the reference site at the black square. Middle: first and second
eigenmodes of the travelling waves radiating out from the sites of input. Bottom: A
schematic representation of the way in which the first and second eigenmodes arise from
addition of even components, and cancellation of odd components, in the extended
cortical field.

Figure 7
Simulation of local field potential time series, power spectral content, and cross-
correlations of two sites in the cortical receptive field, stimulated by combinations of
moving bars in the visual field. Input signals within a bar are spatially coherent, while the
signals input to separate bars are uncorrelated. Signal/noise ratio (point amplitude of bar
driving signals /point amplitude of incoherent background noise) = 300.

Figure 8
Left hand figure: EEG power spectral average for 50 subjects. Upper set of dotted curves
for eyes closed, lower set for eyes open (scaled for clarity). Fits to model shown as solid
lines. Parameter values shown on graph: t_0 is the conduction delay in the
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thalamocortical loop; n is the number of neurons in this loop (here set to zero to lump
corticothalamic delays into the single parameter t_0). Gamma and alpha are delay
parameters related to the equivalent terms in Table 1.
Fits were achieved by varying only the fraction of thalamocortical feedback and the
general level of cortical gain, including cortical activation.
Right hand figure: Complex loci of the wavenumber-independent part of the spectral
content attributable to the thalamo-cortical resonance alone. Solid line eyes closed –
dashed, eyes open

Figure 9
Simulation of the ERP based upon impulse response of the thalamocortical resonance
model.
Fig 9(a)
Comparison of (a) modelled ERPs with (b) experimental ERPs obtained
from normal subjects in response to frequent (background) auditory
tones. The modelled waveforms assumed parameter values all similar or identical to
values used to model the ongoing EEG power spectrum (fig 8). In addition, it was
assumed that a pulse reached (or was generated within) the cortex at t=0.10 s, and that
there was a similar pulse subcortically at about the same time. The net effect of these two
sources is to reproduce the characteristic biphasic waveform of auditory background
ERPs.
Fig 9(b)
Comparison of (a) modelled ERPs with (b) experimental ERPs obtained from normal
subjects in response to infrequent (target) auditory tones. The model parameters were
identical to those used in the 9(a). The difference is that the modelled ERP is the sum of
two background ERPs, shifted by 0.10 s relative to each other. The second impulse
required to generate the second of these ERPs we assume to arise from descending
signals from cortex to input pathways, as the target tone is responded to.


