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Abstract -- Fractal images have for many years been a rich 
source of exploration by those in computer science who also have 
an interest in graphics. They often served as a way of testing the 
performance of new computing hardware and to explore the 
capabilities of emerging display technologies. While there have 
been forays by some into 3D geometric fractals, the 3D 
equivalents of the Mandelbrot set have been largely ignored. This 
is largely due to the lack of suitable tools for rendering these sets 
except perhaps as isosurfaces, a rather unsatisfactory and limited 
representation. The following will illustrate the application of 
GPU based raycasting, a now relatively standard approach to 
volume rendering, to the representation of volumetric fractals. 
Leveraging existing software that has been designed for general 
volume visualisation allows the interested 3D fractal explorer to 
focus on the mathematical generation of the volume data rather 
than reinventing the entire volume rendering pipeline. 
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I. INTRODUCTION

Computer generation and representation of fractals have 
been created from the very early days of computer graphics. 
Indeed one could say they predate computer graphics as we 
know it today because they were originally formed only as 
black and white prints on paper by line printers. This 
representation employed a technique the relies on the relative 
density of characters in the alphabet and is now referred to as 
ASCII art [1]. Almost every student of computer science in the 
late 80's and early 90's at some stage programmed the famous 
Mandelbrot [2] set. Many proceeded to the multitude of 
variants [3] with what will be familiar names to many: 
Lindenmayer-Systems (L-Systems) [4], chaotic attractors and 
iterated function systems (IFS) [5]. These were fertile grounds 
in computer graphics because they not only created compelling 
and beautiful images but also often forced one to consider the 
efficiency of algorithms, the data storage requirements and the 
numerical issues as one zoomed into ever increasing depths to 
explore and confirm the self-similarity, the key characteristic of 
a fractal.  

As computer capabilities grew it was natural for those with 
an interest in computer graphics to think about extending the 
ideas into 3D. For geometric fractals based upon recursive 
replacement, this was relatively straightforward. The rendering 
tools developed for engineering, architecture and the movie 
industry were suited to the geometric primitives involved. The 
challenge was often just to create efficient versions so as not to 
overload the software, software that was designed to handle the 
volume of data likely to be created manually rather than by 

automated algorithms. An example of such a geometric 
construction might be the Menger sponge [6] or the 3-
dimensional version of the Sierpinski carpet. The sponge is 
made up of cube elements, on each iteration the cube is split 
into a 3x3x3 grid of cubes each one third the size of the cube in 
the previous iteration. On each iteration the central cube as well 
as the cube in the center of each face are removed. This 
simplistic formation sees the number of cube primitives 
increase by a factor 20 on each iteration, a factor that quickly 
overwhelms any engineering CAD application. In order to 
create higher iterations one needed to consider how to avoid 
duplicate faces and how to merge connected coplanar faces 
together. 

The extension to 3D of the 2D fractals that are continuous 
functions on a plane has received much less attention. These 
2D fractals in the plane typically have a range of values that are 
normally mapped to some colour ramp resulting in some of the 
beautiful images we are accustomed to. The Mandelbrot style 
fractals being one example, each point on the complex plane 
(the image) has an associated number that, normally, relates to 
how quickly the underlying series escapes to infinity, or 
doesn't. The extension into 3D involves points within a volume 
of space instead of a region of a plane. Each point has a value 
that may be related to some metric, again, such as an escape 
speed. These fractals can be based upon quaternion or 
hypercomplex algebra for transforming points in 3 or 4 
dimensions respectively. The question then is how to visualise 
these volumes, the computer graphics software found in almost 
all electronic devices today can readily create 2D fractal 
images but the higher dimensional geometry is more 
challenging. 

The geometric rendering tools in common usage in 
architecture, engineering or the movie/entertainment industry 
are largely inadequate. One could choose a threshold and draw 
a point or small 3D brick for cells that are on one side of that 
threshold, the results are unsatisfactory for a few reasons. One 
being that the brick resolution in most geometric packages 
would not be small enough for a pleasing representation, a 
modest resolution may be considered 500x500x500 
partitioning of the region in question with a possible 125 
million bricks. Another reason why such a technique does have 
visual appeal is the shading can only use the 3 planes of the 
brick, as such the surfaces do not naturally contain surface 
normals and thus do not look smooth. Meaningful surface 
normals are not straightforward to derive. The usual approach 
is to take samples of the surface a small delta away in three 
directions to form an estimate of the normal. This doesn't work 
for fractal objects with infinite detail because a different 
estimate of the normal will arise for each value of delta, unlike 
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a continuous surface where the estimate of the normal normally 
improves as delta is reduced. Similar arguments apply to the 
use of points or spheres [7]. Figure 1 illustrates the 
unsatisfactory appearance of using bricks and spheres to 
represent the Bedouin fractal, see example 1 later.  

An improvement that solves these problems might be to 
create an isosurface using techniques such as the Marching 
Cubes [8] algorithm. This results in a triangular mesh well 
suited to viewing in many packages and continuous surface 
normals allow for lighting and shading models. However, an 
isosurface only conveys a fraction of the geometric information 
contained within the volume, there is an infinity of possible 
isosurfaces each one conveying different aspects of the same 
fractal. Figure 2 illustrates two such isosurfaces, note that the 
object appears different in each and due to the fractal nature the 
non-smooth appearance of the surface is misleading. The last 
two techniques can be improved slightly by adding a degree of 
transparency based upon the isosurface. But both the visual 
quality and representation of the interior structure is limited. 

Figure 1.  Top,  a sampling of the Bedouin fractal by 1003 bricks (left) and 
5003 bricks (right). Bottom, sampling of the Bedouin fractal by 1003 spheres 

(left) and 5003 spheres (right). 

II. VOLUMETRIC DATA

The sampling within some rectangular bounded region of 
space is what is known in many disciplines as a volumetric 
data set and the process of representing such data is known as 
volume rendering [9] or volume visualisation. Each unit within 
the volume (brick) is known as a 3-dimensional pixel, known 
as a VOXEL (VOlume piXEL). Volumetric data arise in many 

areas of engineering and science, for example the result of a 3D 
MRI scan or the representation for simulation in fluid flow. For 
a CT scan the value at each 3D pixel is density at that point, 
other sources of 3D scans or simulations would have other, 
usually but not always, scalar metrics. The process of volume 
visualisation involves mapping that density range to colour and 
opacity, through what are known as transfer functions, and 
subsequently rendering the result with a model of how light 
propagates through the volumetric space.  

Figure 2.  Two isosurfaces Bedouin fractal from an infinite possible number. 

There are a plethora of software packages, frameworks and 
libraries developed over the years to support volume 
visualisation. Many such as OsiriX, 3DSicer and VisageRT are 
targeted towards medical volumes, still others are tightly 
coupled to the medical scanners themselves. Most general 
visualisation packages, for example, ParaView and Amira 
provide volume rendering capabilities, a reflection that 
volumetric data is considered a key data type in the science and 
engineering fields.  

Volume rendering has always been challenging to perform 
in real time even with the recent use of graphics hardware [10]. 
While the general techniques have existed for some time, the 
performance is directly related to the size of the volume. As 
computing and graphics capabilities have advanced over the 
years, so has the size of the volumes. Volumes derived from 
simulation, for example in engineering and astrophysics, have 
grown as computing power has allowed more fine grain 
simulations to be performed. Volumes have similarly increased 
in size as 3D scanners have improved, especially in medical 
and geoscience. At the same time quality of the renderings has 
improved due largely to the current ray casting approach which 
is well suited to GPU implementations. Additional visual 
appeal has been made possible by considering not just the 
scalar value at each voxel but the gradient in the local 
neighbourhood. Examples of so-called 2-dimensional transfer 
functions (voxel value plus local gradient) are Simian [11] and 
more recently Drishti [12]. 

III. DATA GENERATION

Volume rendering is still a challenging process and 
efficiencies need to be considered. For a given graphics 
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hardware capability the number of voxels on each axis is 
limited, one cannot create an arbitrarily large volume in order 
to support deep zooms, such solutions generally involve 
bespoke rendering algorithms [13]. So given a manageable 
volume resolution, say 10243 voxels, one needs to choose 
where that available resolution is positioned and scaled in 
space in order to represent the region of the fractal in question. 
This is no different to a 2D fractal representation where one 
maps the image bounds to a region of the plane in which the 
fractal resides. 

The dynamic range of many volume rendering packages is 
also limited, largely due to memory limitations. A larger 
volume can reside in memory if it only has 1 byte per voxel 
rather than a floating point number requiring 4 bytes. The 
approach taken by the author is to use a single byte per voxel. 
The volume may be created with a higher dynamic range, 
typically floats (4 bytes), but exported to a reduced dynamic 
range given a knowledge of the voxel value distribution. This 
may be as simple as a linear mapping between the minimum 
and maximum values, or it may be nonlinear in the case of 
extremely high dynamic ranges. 
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Figure 3.  An example of a transfer function specification. 

There are a number of data formats that may be used to 
store the volume, unfortunately there are no standards in 
widespread usage. Various disciplines have their own widely 
supported formats, for example DICOM in the medical space 
and FITS in astronomy. The lowest common denominator is 
just a raw, unstructured file containing the voxel values. Most 
volume renderers will provide a means of reading such data, 
once the dimensions of the volume are supplied by the user or 
read from the header of the file. There are other ad-hoc headers 

that precede the raw data that provide the dimensions in voxels, 
voxel depth, and for instrument scanners the physical 
dimensions and other meta data. While not ideal, the 
unstructured raw data format is proposed due to generality and 
ease of use, both data reading and writing. 

IV. VOLUME RENDERING

It is not the intent of this document to describe a particular 
rendering approach but the algorithm used here is based upon 
the volume being loaded into texture memory on the graphics 
card and view aligned triangles are textured and composited 
together [14]. The basic operation of all volume rendering is 
for the operator to choose a mapping between voxel values 
(assumed to be scalars), and colour and opacity, known as a 
transfer function. The colour mapping can be thought of as 
similar to the application of a colour map to a continuous 2D 
fractal. Opacity is now required because in 3D one may wish to 
see through outer layers into the inner structure. An additional 
capability of many volume rendering tools is for the operator to 
also vary the transfer function based upon local gradient. This 
provides addition control over the appearance of regions that 
are changing quickly compared to regions of similar voxel 
values that are changing more slowly. A notional interface for a 
2D transfer function is shown in figure 3. The colour mapping 
is normally performed in the same 2D space as the voxel value 
and gradient. The transparency, alpha channel, is a 1D function 
of the voxel value. 

Once the transfer function is defined, the rendering process 
(in this case) consists of classical ray casting. Rays are cast 
from the virtual camera, through each pixel on the screen and 
through the volume. A model is applied that specifies how the 
ray is affected by the voxels, that is, by their colour and 
opacity. 

In what follows are three examples illustrating the 
application of volume visualisation algorithms as applied in 
many areas of science, to 3 or higher dimensional fractals. 
Three fractals have been chosen that are not widely known and 
of three distinct classes, a standard escape style Mandelbrot, a 
4-dimensional volume sampled with a cutting plane to yield a
3D volume, and a chaotic attractor.

A. Example 1
The first example is from equations proposed by Russell

Walsmith and affectionately named the Bedouin fractal 
although known previously in other circles as the RockBrot. 
The volume data is created by considering a point (x0,y0,z0) 
within the region of space of interest and evaluating the 
following series.  

xn+1=a+sin(x0) 

yn+1=a+sin(y0) 

zn+1=a+sin(z0) (1) 

where 

a=xn
2-yn

2-zn
2 

b=xnzn 

c=2xnyn (2)
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This is similar to the usual quaternion Mandelbrot but with 
two of the axes swapped. 

The voxel is assigned a value depending on how quickly it 
escapes to infinity, the range is mapped linearly to a byte value 
from 0 to 255. The volume resolution is 10243 (data size of 
1GB) and is suited to interactive performance on a laptop style 
graphics card, for example an AMD Radeon R9 M370X with 
2048MB of memory. Figure 4 shows a rendering of the 
Bedouin fractal, this is the same example used to illustrate the 
poor representation by bricks, spheres and isosurfaces in figure 
1 and 2.  

Note that most of the observed structure actually has the 
same voxel value, the differences in colour arise from colours 
mapped to the gradient. 

Figure 4.  Bedouin fractal on the domain -1.7 ≤ x ≤ 1.0, -1.4 ≤ y ≤ 1.4, -1.4 ≤ 
z ≤ 1.4. 

B. Example 2
This example is based on equations by Marius-F Danca

[15,16] aimed at illustrating that for the alternated Julia sets, 
the Mandelbrot set consists of the set of all parameter values 
for which each alternated Julia set is not only connected, but 
also disconnected and totally disconnected. 

These volume fractals also illustrate how quickly a series 
escapes but in this case it is a 4-dimensional volume, we can 
render out slices in one dimension resulting in a 3D volumetric 
dataset. Since each slice yields one 3 dimensional object 
changing the slice position and angle results in an animation 
sequence. The series is defined as 

zn+1=(zn
2+c1)+c2 ,     zi and ci ∈ C, n ∈ N (3) 

where the complex numbers c1 and c2 define the 4-
dimensional volume. Figure 5 illustrates one such slice 

achieved by setting the real value of c2 to zero. 

In this example the ability to employ transparency is critical 
to representing the very fine structures that have only very 
slightly different voxel values to the main body. 

C. Example 3
This final example is based upon equations originally

provided by Roger Bagula, the form is currently unnamed. This 
is a 3 dimensional iterated function system, a chaotic attractor. 
On each iteration of the function, a new point in 3D is created, 
these points lie on the attractor surface. The straightforward 
method of representing such attractors in 3D might be to place 
a small sphere at each point in the series. While such 
representations can be rendered by traditional surface rendering 
software, the results are generally unappealing for some of the 
same reasons discussed earlier. Specifically the limits on the 
number of points and the lack of surface shading. 

By computing this series to billions of terms and 
accumulating the number of times a point on the attractor lands 
in each voxel region a continuous "smooth" attractor surface is 
formed across the volume of space of interest. 

pn+1(x,y,z) = (2pn(x),2pn(y),1-pn
2(x)-pn

2(y)) / Axy+(-1,-1,0) 
pn+1(x,y,z = (1-pn

2(z)-pn
2(y),2pn(y),2pn(z)) / Ayz+(0,-1,-1) 

pn+1(x,y,z) = (2pn.x,1-pn
2(z) - pn

2(x),2pn(z)) / Axz+(-1,0,-1) 
pn+1(x,y,z) = pn(x,y,z)/ 2 
pn+1(x,y,z) = pn(x,y,z)/ 2 + (1,1,1) (4) 

Where 

Axy = 1 + pn
2(x) + pn

2(y) 
Ayz = 1 + pn

2(y) + pn
2(z) 

Azx = 1 + pn
2(z) + pn

2(x) (5) 

Figure 5.  One of an infinite number of slices of the 4-dimensional fractal. 
This is a slice by the plane Re(c2)=0. The domain is [-2,2] on all axes. 
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Figure 6 is a volume render of a 5123 volume created from 
the first 500 million points of the attractor series. Colour 
mapping designed to provide a biological look, the redder 
portions are those with a higher density of attractor points. 
Traditional means of drawing solid points at each position on 
the attractor doesn't reveal the structure seen here. This is 
essentially a volume rendering of a 3D histogram. 

Figure 6.  Unnamed attractor by Roger Bagula. Domain is [-2,2] on all axes. 

CONCLUSION 
Presented is a means of interactively exploring volumetric 

fractals that is within the reach of anyone with a computer with 
a reasonably capable graphics card. It removes the need to 
develop one's own volume rendering solution but rather 
leverages the extensive research already conducted in that area. 
The approach is general in that the volume creation, 
mathematics, is decoupled from the rendering system. It is 
additionally based upon existing volume rendering software, 
the example employed here is free. The downside is that while 
the visualisation is performed in real time, zooming requires a 
new volume to be created. 

30 years on from the early days of fractal generation it is 
now possible to escape from the 2D plane opening up a whole 
new area of investigation and creative opportunities. 
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