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Abstract

Computer simulations of excitation wave formation in a three-dimensional Belousov—
Zhabotinsky reaction medium is presented. The modelled system is an elongated
domain with immobilised catalyst connected to an ideal reservoir of reactants. It is

shown that transient spatial inhomogeneities within the reactant diffusion coupled
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with oscillatory reaction kinetics give rise to helical waves. Good agreement with
prior experimental observations is obtained and these simulations provide a proof
of formation of helicoidal dissipative structures under macroscopically unperturbed

conditions.
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1 INTRODUCTION

Transmission of propagating excitation waves is observed and studied in var-
ious biological and nonlinear reaction—diffusion systems, such as the aggrega-
tion process of Dictyostelium discoideum cells and the slugs [1], Ca?* waves in
the cytoplasm of Xenopus laevis oocytes [2], CO oxidation on Pt(110) surface
[3], and the Belousov—Zhabotinsky reaction (BZR) [4]. These excitation waves
are not always symmetrical (i.e., concentric rings) but can be characterised by
spirals rotating in clockwise or counter-clockwise direction. This symmetry-
broken structure can be induced artificially by external perturbation, typically
by applying share stress or introducing obstacles against wave propagations
in aqueous BZR, or by light irradiation to erase a part of wave fronts in the
photo—sensitive BZR, [5]. In a catalyst-immobilised gel system, on the other
hand, two—dimensional (2D) spirals [6] and three-dimensional (3D) rotors (he-
lices) [7] emerge occasionally and spontaneously in the course of diffusion of
reactants into the gel. 3D structures of the BZR rotors in laboratory experi-
ments have been reconstructed using optical tomography [8,9], and theoretical

bases for describing the dynamics and time evolution of twisted scroll waves
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have been proposed [10-12]. It is also known that there exists a 3D rotor ob-
servable as a coherent cell motion in a leading part of slug of Dictyostelium
discoideum [13] which is considered to be responsible for the polarity of slug
and subsequent cell differentiation. The origin as well as properties and dy-
namics of 3D rotors are of particular interest in cardiac electro—physiology
where rotating wave segments are precursors of fatal ventricular fibrillation

[14-16].

This study presents computational results on autonomous helicoidal wave for-
mation in a 3D BZR. We use a model of 3D reaction medium resembling a
catalyst-immobilised gel in a capillary glass tube. One end of the medium
is open to an ideal reservoir of reactants (the other components of BZR ex-
cept the catalyst) while the other boundaries are non-flux Neumann type.
As the system changes from inactive to active due to reactant diffusion, we
observe formation of dynamic spatio-temporal dissipative structures. The re-
sults described here contain issues of symmetry-breaking that are not induced
by external control. The model employed is derived from nonlinear reaction

kinetics with linear diffusion terms.

2 NUMERICAL MODEL

The reaction—diffusion model is based on the Tyson-Fife scaling of the two—
variable Oregonator [17-19] modified to account for the diffusion of reactants

[20]. The three-variable system is given by

@=v2u+1<a—a2—fv?‘q) , (1)
or €




— =V?r, (3)

where u and v describe the concentrations of HBrO, (activator) and oxidised
catalyst (inhibitor), respectively; r is a normalised (0 < r < 1) dimensionless
variable describing spatiotemporal reactant concentration and V? = % +

68—;2 + (,;9—;2 is the 3D Laplacian operator. Terms ¢, ¢, and f are the parameters
of the Tyson-Fife model [18,19] and the linear coupling of excitability and

reaction dynamics is modelled using [20]

We set the cartesian coordinate system so that the long axis is along z—
direction and the boundary connecting to the reactant reservoir is at z = 0.
In order to simulate the initial random diffusion process, which corresponds
to the roughness the of gel surface in the laboratory experiments [7], we in-
troduce the following 3D-boundary conditions. (1) Any grid site at z = 0 is
an open site for diffusion with probability p and a closed site with probabil-
ity 1 — p. (2) An open site extends into the medium in z-direction a random
length (uniform deviate) of maximum L, grid sites (Fig. 1). (3) Initially the
closed sites are set to value r,,;, = 0 whereas the open sites are kept constant
as Tmaee = 1 [20]. Any initial condition with at least one open site renders
the asymptotic solution of Egs. (1)—(4) to that of the original two—variable

Oregonator model.



Fig. 1. Schematics of the model of open and closed sites at the boundary of reactant
reservoir (z = 0) and reaction medium (z > 0). Panel on the left shows grid (z,y)
plane at z = 0. Open and closed sites are indicated by black and white squares,
respectively. Graph on the right presents how open sites penetrate into the reac-
tion medium along the gray dashed line on the left. In this example illustration

Ly=L,=L,=5.

3 SIMULATIONS

After initial simulations it became evident that visualisation of the resulting
3D data presents a problem on its own. Isosurface rendering [21] with ap-
propriate threshold value extracted typically two surfaces close to each other.
If the surface is visualised using opaque graphic primitives (e.g. triangles or
tetrahedrons) and only one viewpoint is used, it hinders further the perceived
information of 3D wave structure. Therefore a volumetric representation of the
simulation data was created by mapping the values of u to opacity and colour
(Fig. 2), which is then rendered using ray tracing [22]. This technique does not
require any implicit knowledge on characteristics of the BZR excitation waves

and produces high—quality visualisations even from relatively coarse grids.
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Fig. 2. Opacity and colour mapping used in volume rendering of 3D voxel data For
example, those parts of the volume with u less than 0.2 are totally transparent but
voxels become increasingly opaque as u increases. A standard red-green-blue colour

ramp is employed to colour the voxels, again as a linear function of u.

Figure 3A shows a snapshot of a selected simulation which exhibited non—
trivial pattern formation. In the early stages there is an autonomously formed
wave segment, a rotor, rotating counter—clockwise within the diffusion do-
main open to the reactant reservoir. Because of the limitation of the diffusing
amount of reactant at this phase, the excitable medium and consequently the
wave is effectively two—dimensional. Given more time for reactant diffusion
to enlarge the excitable domain, one can see signs of 3D spatial effects in-
ducing distinctive changes in wave fronts in the less-exitable area (Fig. 3B).
The waves emitted by the rotating vortex extend out in space along the long
z-axis and become planar waves which propagate away from the rotor. These
planar waves disappear when they reach the area which is not yet capable
of supporting wave propagation. However, the 3D wave keeps rotating in a
stable self-sustaining manner and penetrates deeper into the medium. Once
reactants have reached the other end of the medium (but the system is not yet
completely saturated), an intermediate transient state can be characterised.

The space ca. 55% in the left is dominated by rotating helicoidal structure and



the rest by propagating planar waves (Fig. 3C). This hybrid state evolves then
into fully helicoidal structure which extends itself completely throughout the
long axis (Figs. 3D-E). The rotor’s rotation time observed from (z,y) plane

was 7 & 2.65 and it remained constant throughout the simulation.

Figure 4 shows graphs depicting the dynamic evolution of filament shape in
3D space after the helix wave has stabilised completely end—to—end along the
long axis. Here the filament is defined as a line-trace along the z—axis of the
singular point (i.e. the tip) of 2D spiral of each (z,y)-plane. By denoting
L = L, = L,, dynamics can be summarised with: (1) one and half twists
and large cylindrical core (radius &~ L/3, Figs. 4A-B) (2) one full twist, core
radius &~ L/4 (Fig. 4C) (3) one and half twists, core radius ~ L/6 (Fig. 4D).
Thus, the core radius tended to become smaller with reactant saturation, and
the filament to become straight to decrease its length. Eventually the filament
broke due to the interaction with boundaries (data not shown) but continuous
form was nevertheless re—established. However, this induced additional twist
into filament shape and enlarged the core radius (Fig. 4E). Additionally the
filament is prominently straight in space 25%-30% on the left during its early
development (Figs. 4A-B). This phenomenon was observed in experiments as

well [7].

Results from further simulations carried out to determine the effect of ex-
citability (stoichiometric parameter f) on the formation of singular filaments
in the reservoir-reaction medium boundary are shown in Fig. 5. There is a
window in parameter range from f =~ 1.2 to f & 1.8 within which the rotors
are optimally formed and the maximum probability is obtained at f ~ 1.4.
This suggests that excitability has a modest yet observable relation to the

probability with which helix waves can occur. Qualitatively this confirms re-



Fig. 3. Volume renders of variable u using opacity and colour mappings shown in
Fig. 2. Data was collected at 7 = 1667 (A), 7 = 2667 (B), 7 = 3167 (C), 7 = 13000
(D) and 7 = 241000 (E). Egs. (1)—(4) was integrated on a 3D rectangular grid (z = 0,
left) with the forward Euler method using the standard seven—point approximation
for the 3D Laplacian operator [23]. Parameters: e = 0.02, ¢ = 0.002, f = 1.25, grid
size Ny X Ny x N, = 32 x 32 x 96, grid spacing A = 1/2, time step 67 = 3.333- 1073,
p=0.13, L, = 13 (p and L, were chosen empirically). Decreasing the time step by
factor of two did not alter the simulated behavior. These simulations were carried
on a GNU/Linux workstation with 1.3 MHz Intel Celeron CPU and 512 MB of
RAM. Effective performance was 41.7 iterations per second in integration and ca.

150 seconds in ray—tracing a single 600 x 600 image from volumetric data.



Fig. 4. 3D visualisations of singular filament with its (z, y) positions projected onto a
single plane at z = 0. Time in each panel is 7 = 3333 (A), 7 = 8333 (B), 7 = 45000
(C), 7 = 293000 (D) and 7 = 326333 (E). Filament position was obtained by
extracting normalised monochrome image from variable u (IN; x N, pixels, one byte
per pixel) for each z. These images were subjected to threshold at 200 by mapping
pixels below that to 0 (black) and rest to 255 (white). Then Laplacian kernel was
calculated to each pixel, omitting the border pixels, with weight 8 to the center pixel
and weights 1 to neighbour and next nearest neighbour pixels. Filament location
was in the position where Laplacian field was at minimum. Typical maximum error
rate using this method was less than 6%. After visual corrections data was smoothed

using five-point moving average.
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Fig. 5. Probability of rotor formation p, (with standard error) in the open boundary
as a function of excitability f and its fitted curve approximation (dashed line). Model

and numerical parameters, except f, are as in Fig. 3.

sults obtained in similar 2D simulations [20].

4 DISCUSSION

Our calculations demonstrate that complex dissipative structures can evolve
autonomously in a simplistic unperturbed systems. The trigger for formation
of rotors (i.e., symmetry-broken structures), and of a succeeding train of planar
waves, comes from a realistic model of inhomogeneous diffusion of reactants
into homogeneous reaction media. It should be stressed that this is strictly
an initial-value problem. A study conducted by Steinbock et al. found qual-

itatively similar modes of wave propagation in modelling Dictyostelium mor-
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phogenesis but they relied on explicitly inducing discontinuities into spatial
excitability properties [24]. In this present study, linear diffusion and contin-
uous concentration gradient are key elements in evolution and survival of the
helix wave. When the initial rotor emerges, the excitable space is effectively 2D
and its expansion in z—direction is slow due to a large concentration gradient
of reactants. This provides the rotating wave segment an optimal domain to
suppress competing oscillations and to stabilise itself. Once the medium be-
comes sufficiently saturated and transition from effectively 2D to 3D begins,
the rotor has already reached a self-sustaining state. This rotor becomes then
the pivot structure from which filament extends itself into 3D space. Interest-
ingly, this type of 2D-3D transition of reaction medium is known to induce

changes which may lead to wave breakup and turbulence [5,16].

Our simulations on helix—filament formation verify theoretical predictions by
Panfilov et al. [25] and findings in real chemical [7] and biological [13,26] media.
The results also provide argument that formation of spiral-type vortices does
not necessarily require macroscopic perturbations of control parameters in
active media. Rather, alterations in spatial diffusive properties at microscopic
level can induce phase shift of oscillating ensembles. Consequently, this can
lead to spiral formation in 2D [20] or helix waves in 3D as is shown here.
Relevant analogical counterpart to the 3D BZR in biology is cardiac [27,28]
or neuronal tissue [29]. Following the present results, diffusion properties of
active species or reactants in such systems can initiate onset of disturbing
anomalies even though reaction media as such is capable of conducting normal

metabolism.
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