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A model of neocortical development invoking Friston’s Free Energy Principle is applied within the Structural Model of Barbas et al.
and the associated functional interpretation advanced by Tucker and Luu. Evolution of a neural field with Hebbian and anti-Hebbian
plasticity, maximizing synchrony and minimizing axonal length by apoptotic selection, leads to paired connection systems with mirror
symmetry, interacting via Markov blankets along their line of reflection. Applied to development along the radial lines of development
in the Structural Model, a primary Markov blanket emerges between the centrifugal synaptic flux in layers 2,3 and 5,6, versus the
centripetal flow in layer 4, and axonal orientations in layer 4 give rise to the differing shape and movement sensitivities characteristic
of neurons of dorsal and ventral neocortex. Prediction error minimization along the primary blanket integrates limbic and subcortical
networks with the neocortex. Synaptic flux bypassing the blanket triggers the arousal response to surprising stimuli, enabling
subsequent adaptation. As development progresses ubiquitous mirror systems separated by Markov blankets and enclosed blankets-
within-blankets arise throughout neocortex, creating the typical order and response characteristics of columnar and noncolumnar
cortex.
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Introduction
In this paper, we try to provide a principled account of the sym-
metries in functional brain architectures that emerge in neurode-
velopment, utilizing simple neuroplasticity rules and applying
the free energy principle to self-organization of synaptic flux
exchanges.

Analysis of the functional organization of limbic and neocortex
has been undertaken by Tucker and Luu (Tucker and Luu 2021;
Luu and Tucker 2023; Tucker and Luu 2023), working within the
Structural Model of Barbas (1986 and subsequent). This work
has been extended in collaboration with Friston (Luu et al. 2024)
to incorporate a model of predictive error minimization within
each cortical column (Bastos et al. 2012, 2020). The present paper
expands these concepts by introducing an explanation of cortical
development at the millimetric scale (mesoscale) to account for
the structure/function relationships in more general and modular
cellular terms.

The structural model and related function
Structure
We will loosely refer to the Structural Model as a theory of cortical
embryogenesis and structural differentiation that is a compound
of the Structural Model proper, the Dual Origin Theory of cortical
embryogenesis, and the recognition of cortical organization in
target-like rings.

The Structural Model proper (Barbas 1986; Barbas and
Rempel-Clower 1997; Barbas 2015; Garcia-Cabezas et al. 2019,

2020; Sancha-Velasco et al. 2023; Ruiz-Cabrera et al. 2023)
describes the relation between the laminar complexity of the
cerebral cortex and the laminar pattern of cortico-cortical
connections. Synaptic projections from areas of simple laminar
architecture to areas of more complex laminar architecture
originate from neurons in infragranular 5,6 layers and terminate
in supragranular 1/3 layers. Projections from areas of complex
laminar architecture projecting to areas of simpler laminar
architecture originate in supragranular layers 2,3 and terminate
in layers 4,6. Projections connecting areas of comparable laminar
complexity originate in both infra- and supragranular layers
and terminate across all layers. Cellular and molecular features
vary systematically along the cortical gradient of laminar
complexity—factors that favor synaptic plasticity including
histone-modifying enzymes decrease along the complexity
gradient (Sancha-Velasco et al. 2023) while molecular markers
that favor neuron stability increase (Garcia-Cabezas et al. 2017).

On phylogenetic grounds, Sanides proposed a Dual Origin of the
neocortex (Sanides 1962, 1964, 1970) from two anlagen adjacent to
the hippocampal and olfactory allocortices, giving rise to growth
expansions in concentric rings of increasing laminar complexity.
As cortex is traced radially, the simpler layers give way to
neocortex organized in depth as a six-layered structure of mixed
excitatory and inhibitory cells, afferent and efferent to subcortical
and other cortical areas. Morphogenetic gene expression (Puelles
et al. 2019, 2024) follows the radial pattern, and cortical embryo-
genesis begins later and continues longer in the outer rings
of development (Rakic 2002; Barbas and García-Cabezas 2016;
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Garcia-Cabezas et al. 2019). As radial cellular differentiations
proceed, cell connectivity also undergoes modification under
the distance rule (Markov et al. 2011; Vezoli et al. 2021),
favoring cross-connections by shortest and most locally dense
pathways—an arrangement facilitating metabolic efficiency
and rapid interactions in a “small world.” Actual anatomy is a
compromise between the radial versus small world arrangements
(Aparicio-Rodriguez and Garcia-Cabezas 2023) created as cortico-
cortical connections also extend in a circumferential manner
along the radial lines. The upshot is that along the radial lines of
development, centrifugal signals from the limbic system interact
with centripetal signals from special sensory and motor cortex,
to some extent bypassing each other in a counterflow between a
hub-like center versus primary cortical areas that establish direct
sensory and motor interactions with the environment (Adams
et al. 2013).

Further order emerges at the millimetric scale. Cells in layers
2,3 and 5,6 also send intracortical excitatory connections lat-
erally over short distances (Levitt et al. 2002). Layer 4 receives
ascending cortical inputs including those from the special senses
and—crucially for our following arguments—relays these signals
preferentially toward the upper layers by superficially directed
axons (Shipp 2007; Shipp and Friston 2022). In the upper layers, the
superficial patch system (Muir et al. 2011; Muir and Douglas 2011;
Martin and Roth 2014) is made up of patches of cells that make
lateral connections, skipping from patch to neighboring patches
in several steps, and thus forming gridworks apparently organized
to distribute information between intracortical locales. Organiza-
tion is highly variable at mesoscale, and much effort has been
made to systematize the appearances (Horton and Adams 2005;
Molnar 2020). Some parts of the cortex—notably the primary
visual cortex of large animals—are organized in a columnar fash-
ion in which zones of short-axon neurons are surrounded by
groups of superficial patch cells, creating macrocolumns, but else-
where this organization is minimal to apparently absent. Within
macrocolumns, individual cells exhibit organization according to
the stimulus preferences of cells (e.g. Obermayer and Blasdel
1993). Columnar orderliness or absence depends on species brain
size among other factors (Kaschube et al. 2010), but similar neu-
ron response preferences can be detected whether or not columns
are present (Meng et al. 2012).

Function
The dual origins from hippocampal and olfactory origins lead to
separation of the cortex into dorsal and ventral divisions. Tucker
and Luu (2023) argue that these divisions served elementary “go”
versus “stop” roles at the most primitive stage of encephalization,
and that this functional distinction still underlies the dorsal
division’s initiation of actions and control of internally directed
attention and implicit memory, versus the ventral division’s asso-
ciation with alerting responses to novel sensory material and
recall of explicit memories. The divisions are also separate in their
relations to the dorsal thalamus (Butler 2008; Cisek 2022), the dor-
sal division receiving lemnothalamic inputs from spinal lemniscal
sources, and the ventral division receiving collothalamic inputs
from the midbrain roof. Consequently, cortical activation of the
divisions is also separated—the lemnothalamic activation system
serving the dorsal division and the collothalamic system the
ventral division (Butler 2008; Loonen and Ivanova 2016). The two
activation systems differ in predominance of modulating neuro-
transmitters (Hansen et al. 2022, Froudist-Walsh et al. 2023)—the
dorsal system depending on noradrenaline, serotonin, and acetyl-
choline; the ventral on dopamine—and appear to differentially

mediate rapid eye movement (REM) sleep and slow-wave sleep
(SWS), respectively (reviewed in Tucker et al. 2022). The lemnotha-
lamic inputs drive cortical desynchronization and release capac-
ity for impulsion of overt behavior, and the collothalamic activates
the ventral division’s response to novelty (Stenberg 2007).

In functional anatomy, neurons in the dorsal and ventral
streams differ in their sensitivity to stimulus shape and move-
ment—those of the dorsal system being relatively insensitive
to shape and sensitive to movement, and those of the ventral
system vice versa (Trevarthan 1968; Ungerleider and Mishkin
1982; Goodale and Milner 1992; Sheth and Young 2016; Yang
et al. 2022)—so they are suited to the organization of widespread
and coordinated actions, versus recognition of specific objects.
Matching this variation, there is evidence that the receptive
field size of pyramidal neurons in layers 2,3 decreases along the
laminar complexity gradient (Garcia-Cabezas et al. 2018). Notably,
the two divisions differ in the thickness of cortical layer 4—the
layer receiving special sensory afferents and relaying these toward
the cortical surface (Garcia-Carbezas and Barbas 2014; Barbas and
Garcia-Carbezas 2015).

We hope to explain the means by which the centrifugal and
centripetal flows of information lead to the integration of sub-
cortical and cortical information processing, including the emer-
gence of different neuron preferences for shape and movement in
the two divisions. We will relate these to the divisions’ reactions to
surprise and co-ordination of subsequent responses and go on to
show how the same self-organization principles—consequences
of the free energy principle and predictive error minimization—
account for emergence of the mesoscopic order throughout neo-
cortex. We draw upon our earlier work on the embryogenesis of
the cortex at mesoscale (Wright and Bourke 2013, 2016, 2022, 2023,
2024; Wright et al. 2014) initially motivated by an emphasis on
neural field dynamics (e.g. Wright and Liley 1996). We argued that
apoptotic selection of neurons maximizing synchronous oscil-
lation explains columnar and noncolumnar structure and neu-
ron stimulus response preferences—an argument that implicitly
depended on the free energy principle.

The free energy principle
The free energy principle and the concept of prediction error min-
imization, as advanced by Friston and colleagues (Friston 2002,
2005; Friston 2010a, 2010b, 2022; Friston et al. 2012a, 2012b, 2015,
2020, 2021; Friston and Ao 2012; Buckley et al. 2017; Constant 2021;
Palacios et al. 2020; Parr et al. 2022) offers a general framework
for self-organizing systems, including brain function as a specific
instance. The principle depends upon formal parallels (duals)
between laws of nature from the principle of least action to the
organization of all inferential systems. Jaynes’ maximum entropy
principle of optimum statistical information is dual to the laws of
thermodynamics, and Bayesian inference (Friston 2010a, 2010b;
Ramstead et al. 2022) is dual to both. This implies that a correct
explanation of neuronal growth and dynamics is de facto an
explanation of information processing. The Bayesian inference
(i.e. predictive coding) interpretation afforded by the free energy
principle means that the structure, plasticity, and dynamics of the
brain can all be explained by minimizing variational free energy
or, equivalently, maximizing model evidence—a principle neatly
summarized as self-evidencing (Hohwy 2016); namely, gathering
and assimilating evidence for a generative model of the sensed
world.

Essentially, the principle states that systems evolve until
they reach a stable state with minimum residual activity (free
energy) not accounted for by interaction with their surrounding
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environment. Within any system with a boundary via which it
must interact with a surrounding environment, an open steady
state must be reached in which equal and opposite signals are
continuously exchanged via the boundary so as to maintain a
synchronous equilibrium of exchange. This boundary is termed
by Friston a Markov blanket (Kirchhoff et al. 2018). For example,
our sensory epithelia could be regarded as a Markov blanket for
the central nervous system, in which case the brain creates a
generative model of the sensed world, thereby mirroring the
world’s causal architecture (e.g. Friston and Buzsaki 2016).

A Markov blanket is the means by which prediction errors are
minimized. Applied to learning and the brain, this means that
neuronal and synaptic growth must tend inevitably toward a sta-
ble state in which perturbations created by inputs are predicted
by the consequences of earlier learning, so that signals gener-
ated internally minimize the impact of uninformative current
inputs on ongoing activity. At an asymptotic limit (although never
reached in life), prediction of new incoming sensory stimuli is
exact, subject only to certain formal logical limits (Fields et al.
2024) and variational free energy of critical variables approaches
zero. The necessary existence of Markov blankets applies also
between brain subsystems, each of which evolves toward predic-
tion of mutual interactions, so an embedding of blankets-within-
blankets-within-blankets is to be expected, minimizing prediction
errors in multiway interactions. The free energy principle suggests
that any neuronal system or subsystem can be described as a
model or mirror of other subsystems with which it communicates
via a shared Markov blanket, around which we would expect to see
a mirror symmetry of some sort in the structure of the coupled
subsystems.

A prediction error is a free energy gradient (Friston et al. 2017;
Tschacher and Haken 2007). When variational free energy is
minimized, these gradients are destroyed and prediction errors
are resolved. Generated predictions mirror external perturbations
to explain away prediction errors (Fields and Levin 2019; Kiebel
and Friston 2011; Levin 2019). This kind of mirroring does not
necessarily imply exact physical reflection. There may be a
difference in the degrees of freedom across a Markov blanket
(Hohwy 2016) and mirroring can transcend scales. We will show
that patterns of synaptic flux exchanges in the brain can give rise
to patterns of synaptic connectivity that form mirror reflections
in a topological sense and act to maximize zero-lag synchrony
across their line of mirror reflection. Our arguments will be cast
in terms of auto- and cross-correlations of synaptic flux, rather
than formal Bayesian terms.

Active inference and affordance: surprise and the
breakdown of Markov blankets
Friston introduces two supplementary concepts—namely: Active
Inference, as an application of the free energy principle to agents,
and refers to processes within the brain that create options for
future behavior, higher cognitive processes, and the control of
attention and action; and Active Affordance, concerned with the
selective amplification of perceptual components most relevant
to current intention and motivation. These extensions of self-
evidencing go into the realm of anticipation, requiring solution
of multiple, sometimes contradictory demands, and imply the
necessary breaking and restructure of Markov blankets with asso-
ciated perturbations of variational free energy.

Friston joins Tucker and Luu in locating the operations of infer-
ence and affordance within the structural model (Luu and Tucker
2023), utilizing the canonical model of predictive coding advanced
by Bastos et al. (2012, 2020). These models are supplemented

by the more general solution here proposed, which offers an
explanation of the information flow geometry throughout cortex,
in lateral organization as well as cortical depth.

A minimum free energy organizational unit
We begin by describing a hypothetical unit that will emerge as
zero variational free energy is approached in a realistic neuro-
dynamic field. The description is summarized from Wright and
Bourke (2024), and further mathematical background is given in
the Appendix. We will show that this schema plays out repeatedly
in different forms throughout development.

Basic assumptions
Cells and presynaptic f lux
Features of the structural model essential to the following argu-
ments are shown in Fig. 1. We assume that development in radial
layers is determined by autonomous unfolding of the genetic pro-
gram, with other selective factors, to be discussed, subsequently
operating.

Neurons operate close to metabolic limits imposed by their
large surface area/volume ratio and high demands for ion pump-
ing (Vergara et al. 2019). Cortical synapses are few compared to the
number of contacts made between axons and dendrites, so neu-
rons form a sparse one-to-many network, with weak connectivity
per synapse (Perin et al. 2011; Song et al. 2005), and low degree
of separation. Closely situated neurons form densely interwoven
and interpenetrating networks.

We will focus on minimization of free energy with presynaptic
flux as the variable of interest. The n unidirectional flows of
presynaptic flux in the developing network can be represented
as the n elements of a square matrix, �(t) with elements ϕij, that
each represent the presynaptic flux received at the i − th neuron
from the j − th neuron

�(t) = GQ(t) (1)

where G(t) is a square matrix operator of presynaptic gains and
axo-dendritic conduction times, transforming Q(t), a vector of
action potential pulse rates of all neurons. Additive dendritic sum-
mation of presynaptic pulses and conversion to action potentials
according to a sigmoid relation are assumed, but their details are
not critical to our following arguments.

Our aim is to describe the geometrical forms toward which �(t)
and G(t) converge during development.

Hebbian plasticity
We assume Hebbian gains follow the unification of fast and
slow synaptic learning rules proposed by Izhikevich and Desai
(2003) combining short-term plasticity and short-term depres-
sion, with the slower and more permanent Bienenstock–Cooper–
Monro (BCM) rule, including slow “floating hook” negative feed-
back. Peak synaptic flux delivered along all pathways of flow is
given by

ϕij

(
t + |i−j|

ν

)
= εijgijρijQj(t) (2)

Qj is the pulse rate of the j − th neuron, υ is the speed of

signal spread, and |i−j|
ν

is the delay from pulse generation to
arrival of peak pulse density at pre-synapses on the i − th neuron,
averaged over all routes, polysynaptic or monosynaptic. Synaptic
gains are separated into three timescales, so that εij, gij, ρij are the
transient synaptic efficacy, the slow dynamic synaptic gain, and
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Fig. 1. Essential features of the structural model. With distance from the limbic system, cortical neurons become clustered into more distinct strata
in layers 2 and 3, and 5 and 6 (black cells), separated by layer 4 (white cells). Left from center: radial development of cortical layers in the ventral
division. Right from center: radial development of cortical layers in the dorsal division. Note greater differentiation of layer 4 in the ventral division.
Center: radial development (dashed arrows) progresses from limbic origins to special cortical sensory/motor areas, with lateral intracortical and cortico-
cortical connections (gray arrows) also adding circumferential connectivity.

the structural synapse gains along the polysynaptic pathways,
respectively—competitive on all three timescales. Synaptic effi-
cacy must lead slower synaptic development, rising with presy-
naptic flux pulse rate until reaching a transient limit of substrate
exhaustion. Slow and structural synapse consolidation become
time averages of efficacy.

The functional forms for free energy minimizing processes are
usually expressed in terms of gradient flows on variational free
energy per se; however, equation (2) emerges under predictive
coding or hierarchical Bayesian filtering formulations of self-
evidencing when distinguishing between the optimization of pre-
cision or synaptic gain and the learning of synaptic connections
between predictions and prediction error units (e.g. Bogacz 2017;
Friston 2008).

Anti-Hebbian plasticity
Homeostatic mechanisms keep the firing rates of cortical neurons
and the balance of excitatory and inhibitory synaptic impulses
within stable limits. Anti-Hebbian synaptic plasticity, not yet fully
understood, acts to normalize excitatory and inhibitory synaptic
gains, while leaving the relative strengths of Hebbian influences
unchanged (Keck et al. 2017).

Maximization of synchrony
Developing neurons are selected to maximize zero-lag synchrony
and concurrently minimize total axonal length into an ultra-
small world configuration. Synchronous firing appears early in
neuronal development along with the development of small world
connectivity (Downes et al. 2012; Markov et al. 2011; Vergara et al.
2019; Bassett and Bullmore 2006). Concurrent apoptosis (Hollville
et al. 2019) favors cells that are firing with zero-lag synchrony
(Heck et al. 2008; Sang et al. 2021) apparently because synchrony
favors high metabolic turnover and resistance to cell suicide
(Vergara et al. 2019).

Development under constraints
Recurrent features of the geometry of presynaptic flux will
emerge as features of cortical anatomy. Hebbian plasticity with
competition will favor development of monosynaptic connections
along preferred pathways. Emergent fields of synchronous firing
constitute the spatial eigenmodes of �(t), with remaining con-
nections mediating interactions among the spatial eigenmodes.

Convergence to this condition can be explained under the free
energy principle, as follows.

Minimization of free energy
As growth proceeds, cell numbers increase as does total presy-
naptic flux. Hebbian learning forces a fall in the variational free
energy of presynaptic flux, F.

F = A − C → 0 (3)

Here, A is total presynaptic flux autocorrelation and C is total
presynaptic flux cross-correlation (see Appendix). This equation
can be also read as Accuracy minus Complexity, measuring the
emergence of structured connectivity.

At the limit at which F = 0, it follows that in the exchange of
synaptic fluxes ϕijand ϕji, over all synaptic routes between cells at
any positions i and j, at all times t and time-lags τ , the sum of their
autocorrelations is equal to the sum of their cross-correlations—
i.e.:

ϕij(t)ϕij (t − τ) + ϕji(t)ϕji (t − τ) = ϕij(t)ϕji (t − τ) + ϕji(t)ϕij (t − τ)

(4)

At this limit, all synaptic fluxes represent the spatial and
temporal associations in the network’s inputs, and their probabil-
ity distributions satisfy Bayes theorem—which is what is meant
by self-evidencing. Steady-state equilibrium requires that energy
be equipartitioned—for all i, j, t, τ , ϕij(t) = ϕij (t − τ) = ϕji(t) =
ϕji (t − τ).

Maximization of synchronous oscillation
Selection of neurons that engage in zero-lag synchronous
oscillation requires emergence of bidirectional symmetry of
exchanged excitation between cells. This results when pairs of
excitatory cells, or pairs of inhibitory cells, exchange equal and
opposite flux at zero lag (τ = 0), and when pairs of cells, one

inhibitory and the other excitatory, fire in antiphase at lag τ = |i−j|
υ

,
i.e. half the period of synchronous oscillation (Chapman et al.
2002; Wright et al. 2000). Thus, zero-lag synchrony is a steady
state with energy equipartition and zero variational free energy.
Fields of synchrony form the spatial eigenmodes of the network,
and coupled interactions of the spatial eigenmodes are described
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by asymmetric exchanges of flux that are also solutions of
equation (4).

Minimization of prediction error—minimization of
perturbation and mirror synchronous fields
Approach to steady state requires minimization of perturbation,
but since the system is under continuing input, then where 	�+ is
a vector sum representing flux induced by the externally imposed
signals, there must arise an oppositely directed vector sum 	�−,
the compensating synaptic flux required to maximize stability; in
effect the neural network predicting and neutralizing its inputs
with minimal error, so

	�+(t) − 	�−(t) → 0 (5)

That is, the free energy gradients vanish as the free energy is
minimized.

Representation of externally imposed and generally time-
varying and asymmetrical inputs requires spatial eigenmodes
that are coupled by asymmetric and time-varying flux exchanges.
Consequently, consistency with relation (5) requires that spatial
eigenmodes must develop in paired systems with mirror reversal,
each with time-varying flux exchanges between eigenmodes
oppositely directed to those in the mirror partner. This concurs
with early formulations of self-organization, such as the law of
requisite variety; i.e. a system or regulator must have as many
internal degrees of freedom as the number of controllable degrees
of freedom in its environment. The law of requisite variety can
also be viewed in light of the good regulator theorem (Conant and
Ashby 1970); namely, every good regulator must be a good model
of the system that is being controlled. Thus, each of the paired
mirrors is a good regulator of the other.

Excitatory/inhibitory balance—maintenance of a steady
state
Steady state requires maintenance of average excitation at a
steady level and balances excitatory versus inhibitory flux. That
is:

∑
�e → ∑

ϕi → constancy (6)

where
∑

ϕe is the total excitatory presynaptic flux and
∑

ϕi is the
total inhibitory presynaptic flux. This stabilization is provided by
anti-Hebbian plasticity.

Paired mirror systems must be able to maintain overall excita-
tory/inhibitory balance, and this can be provided by the collision
of traveling waves at the line of interaction of the mirror pair. Since
this wave collision permits interaction only of waves orthogonal
to the line of wave intersection, overall balance requires multiway
interaction of multiple mirror-pair representations.

Mirror-symmetric fields and Markov blankets
Figure 2 left illustrates a system composed of a pair of mirror-
symmetric coupled spatial eigenmodes, each of the pair gener-
ating oppositely directed, colliding, traveling waves. The diagram
shows the topology of the connections and flux exchanges—not
a specific topography. The mirror-twin eigenmode systems might
be separated by some distance, or their cell soma positions might
be interdigitated. At the dashed line, traveling waves can collide.

Interactions at the blanket
Figure 2 right shows how the synchronous fields can interact
in the dual system. Paired mirror systems can interact at the

line of collision whether cross-connected by excitatory linkages
or by inhibitory linkages, and maintenance of balance could
take place by either mechanism or their dynamic combination.
The asymmetric forms of coupling are those needed to mediate
coupling of spatial eigenmodes within each of the dual systems,
and also represent episodes of asymmetric exchanges induced by
transient perturbation. By shift between the symmetrical excita-
tion, and the symmetrical inhibitory forms of coupling, the dual
system can achieve joint excitatory/inhibitory balance. Striking
this balance can be mediated in part by the negative feedback
“floating hook” property of the BCM learning rule, but the slower
mechanisms of anti-Hebbian plasticity are essential to sustain the
adjustment.

As junctional exchange manages excitatory/inhibitory balance,
prediction error minimization proceeds within each of the mirror
duals, and free energy approaches zero. The signals arriving at the
junction progressively maximize their mutual information. The
mirror-like junction is therefore a Markov blanket, defined by the
properties that prediction errors are continuously minimized in
the face of recurrent patterns of external input, and although
signals are exchanged bidirectionally across the line of mirror
reflection, zero-lag synchrony is maintained at the interface.
However, never before encountered external perturbations will
always cause temporary disruption of the blanket and the passage
of a wave of excitation, or of inhibition, across the line of mirror
reflection. Thus, the making and breaking of blankets is a part of
ongoing function.

The properties of a Markov blanket ascribed here are con-
sistent with earlier theoretical formulations and observations.
The dynamics of a Markov blanket can always be expressed in
terms of a synchronization manifold (Friston 2019) on which
the dynamics of both sides of the blanket evince a generalized
synchrony reflecting the mutual predictability and minimization
of prediction errors at the Markov blanket. Even when the activity
on each side of the blanket is chaotic, when matched to identity
on each side, they will be synchronous at zero-lag; very much like
that seen empirically (Gollo et al. 2014).

A discussion of the relationship between this explanation
of the operation of prediction error minimization versus the
canonical model of Bastos et al. (2012, 2020) is deferred to the
Conclusion.

Multiway interactions across blankets and redundant
representation
Multiway interaction of multiple paired representations, extend-
ing some distance across the cortical system, must follow the free
energy principle toward maximum joint stability, bringing infor-
mation in inputs that have differed across the cortex into joint
maximization of their mutual information. By further extending
to the entire extent of the cortex, prediction errors between brain
and environment are minimized.

The generation of multiple mirror systems depends upon
redundant storage capacity of cortical synapses. It is shown in the
Appendix that as learning develops, the amount of information,
including the internal interactions that comprise active inference
and active affordance, can become very large, but early in
development only simple dual synaptic systems could exist.
The largest and simplest scale on which such self-organization
could emerge is along the lines of radial development of the
neocortex. Multiple mirror-pair subsystems might then develop
at diminishing scale. The next section considers how this might
take place.
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Fig. 2. Left: the topology of neural field interactions meeting requirements for minimization of free energy, minimization of prediction errors, and
maintenance of excitatory/inhibitory balance. Within each of a pair of mirror-symmetric systems, spatial eigenmodes (represented arbitrarily as yin-
yang figures) interact via excitatory and inhibitory cross-couplings (solid and dashed black lines) generating oppositely directed traveling waves (colored
arrows), which collide at the double dashed line of symmetry. Right: exchanges between spatial eigenmodes across the line of wave collision. The gray
squares marked e and i represent clusters of excitatory and inhibitory neurons whose interaction generates fields of synchronous oscillation (spatial
eigenmodes). Synapses cross-link to either the excitatory cells, or the inhibitory cells in the neighboring assembly, in one of eight possible symmetrical, or
asymmetrical, exchanges. In the left column, these exchanges take place at longer ranges, via efferent excitatory cells. In the middle column, additional
exchanges also made possible at short ranges via efferent inhibitory cells are shown. Approximate cross-correlation plots for excitatory cells in each
of the paired eigenmodes are shown on the right. These apply to exchanges by excitatory or by inhibitory cross-links, so zero-lag synchrony across the
line of wave collision is maintained by all symmetric exchanges and lag synchrony by asymmetric exchanges.

The extension of self-organization within
the hierarchical order of the structural
model
Counterflows in the radially developing
neocortex
Figure 3 shows a series of cortical columns, or domains of cortex
with a particular laminar complexity, like those in Fig. 1, indi-
cating the signal flows from higher to lower in the hierarchy
along the lines of radial development. Counterflows of synaptic
flux develop, limbic flows centrifugally and special neocortical
areas centripetally, with the inputs to layer 4 from the special
senses imposing a division of flows from the limbic centers.
This counterflow constitutes an initial and large-scale instance
of roughly mirror-symmetric flows, with preferential direction
of flow in layer 4 toward the superficial layers created by that
layer’s superficially directed axons bringing the counterflows into
interaction across a Markov blanket (double dashed line, Fig. 3)—a
blanket bringing information of limbic and special sensory origins
to self-evidencing exchanges.

Shape and movement sensitivities in developing
neurons
The counterflows differ in the dorsal and ventral divisions
because of the differing thickness of layer 4 in the ventral division
with associated layer 4 deep-to-superficial directed neurons
(Shipp 2007). Maximization of synchrony and apoptotic selection
of neuron response preferences will differ in the two divisions
as a consequence, with subsequent differences in organization
of information flows. Where there is a strong deep-to-superficial
direction of axons and synaptic flux, competitive processes will

favor the emergence of connections in the depth axis, and restrict
the development of lateral connections in layers 2,3. This is
consistent with the apparent restriction of receptive fields of
neurons high in the gradient hierarchy (Garcia-Cabezas et al.
2018). Conversely, with restriction of layer 4 neurons, competition
will favor emergence of lateral connectivity to a greater degree
and open the cells to a spatially more extensive range of
afference.

The Appendix gives a mathematical account of the above
consequences for neuron response properties. The neurons
with longer lateral spread are less sensitive to detailed spatial
structure in their afferent signals and more sensitive to dif-
ferences of conduction delays from their laterally distributed
sources. They are therefore little sensitive to stimulus shapes,
but more sensitive to stimulus movements. For the opposite
reasons, neurons with less lateral spread of their axons must
be more sensitive to differences in shape and less sensitive to
movement.

These differences can account not only for the different sen-
sory preferences of the dorsal and ventral divisions, but when
the efferent properties of the cells are considered, they are suited
to initiate widespread but more precisely timed inputs to other
neurons on the one hand versus more spatially restricted and
coincident inputs on the other. This explanation of distinction in
dorsal versus ventral neuron preferences has consequences for
ongoing self-organization as will be discussed later. However, it
is not contended that this developmental reason is the sole factor
operating. Other reasons for the distinction have been advanced—
e.g. Sheth and Young (2016). Such explanations need not be in
contradiction, but may be synergic with a primary means of
selection.
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Fig. 3. Signal flows along pathways of radial development in the structural model (after Shipp 2007). Left four columns: ventral cortex. Right four
columns: dorsal cortex. At the extremes, left and right, are columns in distal neocortex, associated with a special sensory/motor areas. Columns toward
the center are progressively more centrally placed and higher in the hierarchical sensory order. Vertical blue arrows in the extreme special sensory
columns indicate the projection of primary sensory afferents to cells in layer 4 and descending small red arrows mark efferent projections from layers
5,6 to subcortical systems. In all columns, small blue vertical arrows mark the onward projections of axons preferentially directed toward the surface
from layer 4 to layers 2,3. Small red vertical arrows mark counterflows of traffic from layers 2,3. Laterally projecting red arrows indicate cortico-cortical
connections descending from higher in the sensory hierarchy to lower. Diagonal blue arrows mark the counterflow of signals from lower to higher
hierarchy. Because of the relative thickness and directed axons of layer 4 in the ventral cortex, interactions in depth between layers 4 and 2,3 are greater
in ventral cortex. The double dashed lines shows the zone for development of a Markov blanket.

Further evolutions of connections
Two further trends follow as cell differentiation along the radial
lines proceeds.

The emergence of modular columnar structure
As indicated previously, two classes of neuron with differen-
tial preferences for space frequency and movement sensitivity
develop. To proceed toward maximization of synchrony and min-
imization of free energy, symmetric bidirectional monosynap-
tic connections must emerge within and between cells of both
classes. This requires emergence of a periodic structure, as will
be discussed in detail in a following section.

Circumferential cortico-cortical connections
Mirror assemblies maximizing joint synchrony can arise in
another way as cortico-cortical connections develop, superimpos-
ing effects of the distance rule upon the structural model, creating
inter-area linkage not only along the radial development of the
structural model but also circumferential to lines of growth. These
cortico-cortical projections form U-shaped loops in cortical white
matter, projecting from one cortical area to its neighbors with
mirror symmetry, and recurrent reversals of chirality in a series
of inter-areal exchanges (Sereno et al. 1995; Konkle 2021). The
corpus callosum is the largest such system, creating connections
with mirror reversal between hemispheres.

Self-organization at mesoscale: emergence
of mirrored synaptic maps in actual
anatomy
Our earlier work (Wright and Bourke 2013, 2016, 2022, 2023, 2024;
Wright et al. 2014) considered the development of periodic struc-
ture at mesoscale. Simulations of cortical growth indicated that
dual mirror systems of connections emerge during development,
although when compared to actual anatomy, the appearance of
the systems is partially obscured as a consequence of the sparsity
of synaptic connection of the neurons, as next explained.

Outcome of growth simulations
Our simulations (Wright and Bourke 2016) considered the lateral
extension of excitatory intracortical connections at millimetric
scale, simplifying axonal lengths of cells to two populations with
long versus short axons. The assumption of differing axonal
lengths can now be regarded as the outcome of the competitive
processes previously described. Mathematical aspects are covered
in the Appendix, and qualitative outcomes of the simulations are
described here.

Under operation of a force equilibrium algorithm equivalent
to maximization of synchrony or minimization of axonal lengths,
or both, it was shown that short axon cells formed clusters
surrounded by pools of the long-axon cells, the latter in systems
with hexagonal, square, or irregular tiling. Variation of the weight
placed upon small-world optimization versus synchrony maxi-
mization showed that the clustering of the long-axon cells was
partly attributable to small world optimization, but that the orga-
nization of the cells remained relatively diffuse. With emphasis on
synchrony maximization only, the clustering of the cells was com-
plete. With both factors considered, simulation outcomes varied
depending on the absolute and relative lengths of the short versus
the long axons. Where all axonal lengths were shorter, and when
the long-axon lengths were closer to those of the short axons, then
a more diffuse small-world order predominated. With increasing
difference of the relative axonal lengths, more clearly columnar
structure emerged. This can account for the columnar order of
the primary visual cortex, as an aspect of strong selection for cells
with short axons generated by interactions of layers 2,3 with 4.

Reconstruction of synaptic dispositions
The outcomes of these simulations permitted reconstruction of
synaptic positions as they would emerge in a clearly columnar
case; in primary visual cortex (V1). Supplementary material
accompanying this paper aids in visualization of the synaptic
structures in three dimensions. Figure 4 left shows features
of reconstruction in a single cluster of short-axon cells and
the long-axon cells surrounding the short-axon cluster. In the
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Fig. 4. Organization within cortical columns. Left: reconstruction showing disposition of cells and synapses for maximum synchrony in a surface-oblique
view of a column. Large colored neurons represent superficial patch cells. Black smaller cells are local short-axon excitatory cells in layers 2,3 and 5,6.
White cells are those of layer 4. Small colored spheres represent synapses efferent from patch cells of the same color (return bidirectional synaptic
connections not shown). Middle top: a subset of local cells from the reconstruction are shown in isolation. Black and white connections indicate the way
that interpenetration of networks of local cells arises as a consequence of network sparsity. Occasional cross-links are shown as dashed black and white.
These bridge the sparse networks and result in amplification of synchrony in closed loops. Middle bottom: an abstract representation of the networks;
middle top shows the cells as arrayed in a closed loop configuration analogous to a Mobius strip. Patch cells (shown as colored blobs) deploy synapses
so to maximize co-resonance between local and patch cells, thus further maximizing network synchrony. Right top: a view from the cortical surface of
adjacent columns, showing how these become arranged in approximate mirror symmetry with their neighbors. Overlap of columns minimizing axonal
lengths partially obscures the periodic ordering of patch cells and synapses maximizing synchrony. Right bottom: plots of distribution of orientation
preference (left) and high and low spatial and temporal frequency preferences (right) that can be explained by these connection patterns.

reconstruction, the original two-dimensional simulation outcome
has been generalized to cortical depth, although this should not
be understood as a replication of connections identical to those
in the superficial layers.

The reconstructions show the way bidirectionally symmetric
connections maximizing synchrony lead to structures consistent
with columnar structure in visual cortex (see 4.5) and the super-
ficial patch network. At a distance, X, the axonal density of the
short- and long-axon populations is equal. At distances less than
X, the short axons have higher axonal density, and vice versa
for long-axon cells, so the short-axon cells generate maximum
synchrony by being clustered together, and the long-axon cells
must form smaller local clusters, themselves separated by a
distance X or more—thus able to maximize synchrony over longer
ranges by connections skipping over multiples of X. Sparsity of
connection requires that the short-axon cells form interpene-
trating meshes of connection, occasionally cross-connected, thus
maximizing their overall synchrony. The short-axon and long-
axon populations form connections at cell body separations equal
to X, creating arcs of connection between the short-axon cells
and their surrounding long-axon partners, deployed in a form
analogous to projection of the plane onto a Mobius strip. (Again,
see Appendix for further details.)

Relations between columns
The process of arrangement for maximum synchrony can be fol-
lowed into the arrangement of adjacent cortical columns. In Fig. 4

right, reconstructions of seven adjacent columns in hexagonal
array are shown. It can be seen that the extension of connections
among the long-axon cells have assumed the form of superficial
patch cells and maximization of joint synchrony has resulted
in approach to mirror reflection between adjacent columns—
a mirror symmetry that is broken in a hexagonal array, but is
exact if patch cells are in a square array, as in ocular dominance
columns.

Figure 4 right also shows the way that approach to ultra-small
world connections cells results in a blurring of the columnar
pattern that arises as a consequence of synchrony maximization.
However, whether clearly columnar or not, the same modular
recurrence is present in all cases.

The superficial patch system, global-to-local
maps, and spatiotemporal images
The clustering and connections of the long-axon cells as super-
ficial patch cells provide a communication system conveying
signals between scales—that is, mapping from the scale of the
patch network to the scale of the cortical column, referred to as
a global-to-local mapping. So, a bidirectional mapping between
scales which is topologically equivalent to mirror reflection
occurs. The bidirectional nature of the global-to-local connections
permits both read-in and read-out of signals to storage in the local
maps.

Information in the global field is stored in the local map,
creating a spatiotemporal image. The mapping can be represented
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using complex numbers (see Appendix) as

O (P, t) ↔ o
(
±p2, t − |P−p|

ν

)
(7)

where O is a pattern of activity at the larger (global) mesoscopic
scale and o is the projected image to any given column at the
local scale. P are cell positions in the global field expressed
as a complex number, and p are corresponding positions of
neurons in the local maps—the squared value indicating that
the local maps are formed by projection to closed loops of
connections with a Mobius strip–like conformation. The symbol
± shows that the local map may form with either left- or
right-handed mirror chirality. Time is t, and signals pass in
either direction with a time lag

∣∣P − p
∣∣ /υ where υ is again the

speed of transmission. Representation of a projection from the
global field onto a Mobius strip–like arrangement shortens the
distance and therefore the strength of connection between all
homologous points in adjacent columns, adding to maximization
of synchrony for the entire cell population. Thus, the global field
and the local field are mirror reflections in their topological
form, while a geometric mirror reflection applies between
columns.

Recalling considerations of the emergence of shape versus
movement sensitivity, it can be seen that the short-axon local
cells are suited to storing information about stimulus shape,
while the longer axon superficial patch cells are more suited to
conveying information about movement in the global field. The
whole is a system for conveying information about interactions
between objects—or when operating as outflows from the local
maps, to production of structured outputs delivered in a timed
sequence.

Match to experimental findings
The mapping (7) explains a wide range of experimental findings
(e.g. Bosking et al. 1997; Rockland and Lund 1983; Issa et al.
2000; Girman et al. 1999; Wiesel and Hubel 1974; Blakemore
and Van Sluyters 1974; Obermayer and Blasdel 1993; Takahata
et al. 2014; Espinosa and Stryker 2012) as reported in Wright
and Bourke (2013, 2016, 2022, 2023). The deployment of synapses
between patch and local cells underlie the “like to like” rule that
connections of the patch cell system project to surrounding local
cells of similar orientation preference (OP) in adjacent pinwheels
(Bosking et al. 1997)—including recent findings leading to revi-
sions of the rule (Chavane et al. 2022). They account for the
organization of OP for slow-moving visual lines oriented from
0 to 180 degrees around the entire 360 degrees of the singu-
larity, and for OP linear zones and saddle points as marginal
effects in mirrored systems. Time lags of conduction explain the
variation of OP with the speed, length, and angle of attack of
the moving line (Basole et al. 2003)—an effect not accounted
for in feedforward models of OP, showing that lateral contextual
connections exert a major effect, contrasting with the invari-
ant quality of OP in purely feedforward models (Vidyasagar and
Eysel 2015).

The deployment of zones of preference for high spatial and
temporal frequency (HSF) and low spatial and temporal frequency
(LSF) (Issa et al. 2000, 2008; Baker 1990) are also explained. HSF
zones form preferentially in circumferential arrangement about
singularities because of the concurrent arrival of pulse trains
from positions circumferential to the singularity in the global
map and vice versa for LSF. Competition for the formation of
synaptic connections of either type occurs at the OP singularities,

explaining why LSF and HSF appear to be randomly located
at the singularities. HSF and LSF zones fit requirement for the
occurrence of distinct spatial eigenmodes, tuned to different spa-
tial and temporal frequencies.

Receptive fields of neurons in somatosensory cortex obtained
from vertical electrode penetrations show a pattern consistent
with the distribution synapses in a Mobius-like configuration
(Wright et al. 2014).

The model also accounts for the antenatal development of neu-
ron preferences before exposure to sensory stimulation (Wiesel
and Hubel 1974) as well as the postnatal loss of cells in subjects
selectively deprived of stimuli with lines of a particular orien-
tation (Blakemore and Van Sluyters 1974). This is because the
synaptic ordering shown in Fig. 4 forms without requiring struc-
tured inputs, whereas postnatally, ongoing competition results
in restriction of responses to stimuli actually present in the
environment.

Mirror assemblies of all sorts and their Markov
blankets
Figure 5 summarizes the ways in which mirror systems with
intervening Markov blankets can arise. As well as mirroring along
the radial axes of the structural model, a multitude of mirror sys-
tems can tile the cortex, as adjacent columns, as interpenetrating
sparse systems equivalent to columns, or as systems separated
but interconnected by cortico-cortical connections. They can be
mirrored in cortical depth with each layer laterally mirrored. They
form mirrors between scales, as the patch system projects to each
column or its noncolumnar equivalent, and as mirrors between
entire cortical areas. These differing ways in which mirrors can be
arranged are a set of topographies corresponding to the topology
of the theoretical unit in Fig. 2.

The development of whole brain
functionality
The merging of limbic and neocortical function,
with capacity for reaction to surprise
By self-evidencing along the Markov blanket running between
layers 2, 3 and 4 along the radial lines of development, contin-
uous integration of function can take place. A basis is provided
for the fusion of innate behaviors, evolved over millennia, with
flexible individual capacities for learning. Subcortical and limbic
circuits, sensing viscero-somatic and metabolic needs, and driving
elementary approach and avoidance behaviors can be brought
into line with the neocortex, with its detailed sensory and per-
ceptual processes, including nociception and two-way interaction
with the environment. Blankets forming elsewhere are essentially
assisting in the approach to stable exchanges with minimum
prediction error along these crucial radial lines.

At all stages, the sudden introduction of unanticipated
external stimuli will disrupt these blankets, conveying waves
of excitation/inhibition along the radial lines of development,
driving return response from the limbic system, and forcing
new departures in neocortical self-organization. The merging
of innate learning with individual experience and the gen-
eration of arousal in response to surprise set the stage for
adaptive learning in general. Factors determining the individual’s
survival and opportunities for alternative plans of action are
brought into play together, leading toward outcomes consistent
with species survival as well as current and past individual
experience.
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Fig. 5. Mirror representations in approximate developmental sequence. Double black dashed lines indicate lines of mirror symmetry, and associated
Markov blankets. Red and blue arrows indicate presynaptic flows toward and along lines of symmetry. (a) Development along the radial lines of the
structural model creates a counterflow with an intervening Markov blanket. (b) Additional circumferential development between cortical areas via
U-shaped mirror connections projects each cortical area to its neighbors with mirror symmetry. (c) Superficial patch cells shown as dark patches form
a communication network generating local maps, producing a mirroring between scales. (d) Adjacent local maps, with variable degrees of overlap,
interact between homologous mapping positions across blankets. (e) Along the lines of radial development, mirror pairs form laterally in layers 2,3 and
layers 5,6.
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Active inference, active affordance, and changes
in the level of variational free energy
With surprise and the generation of arousal, a surge in cortical
free energy results. As this declines under ongoing free energy
minimization, the interaction of all cortical areas must take place.
Interactions between dorsal and ventral divisions with minimiza-
tion of prediction errors mean the creation and fusion of new
perceptions, new actions, and plans of action—that is, to active
inference and active affordance.

It was earlier described how the greater thickness of layer 4
in the ventral division results in the dorsal division’s emphasis
on long wavelength movement and timing-sensitive information
storage, while in the ventral division the emphasis is on stimulus
integrity and the representation of objects. The reversible
mapping (7) indicated that these neuron preferences also account
for spatially coordinated action schemas, explaining Tucker and
Luu’s descriptions of the specialized functions of the divisions.
The two divisions are specifically suited to cooperation in
the merging of active affordance into actions and to active
inference.

Conclusion
Limbic and neocortical integration
We have shown how synaptic flow in the developing neocortex,
requiring relatively little exact genetic specification, can lead
step-by-step to the unfolding of detailed modular structure and
function. During this development, self-evidencing keeps the rigid
specifications of old brain function in step with flexible neocorti-
cal development, leading to a universality at multiple scales of
mirrored systems with intervening Markov blankets, mediating
active inference and active affordance. This supplements the
functional interpretation of the structural model advanced by Luu
and Tucker (2023) that utilized the canonical model of prediction
error minimization within the cortical column (Bastos et al. 2012,
2020) and now places the interaction of neural systems across
internal Markov blankets on a more general and functionally
richer basis. Increase of variational free energy in response to sur-
prise aids search, while interactions between mirror connections
across Markov blankets of differing geometric form, between and
within scales, lead toward maximum mutual information in all
areas of the brain.

Simplicity and generality
This theoretic account of neurodevelopment and function is com-
posed of simple elements. Only elementary individual neuron
properties needed to be assumed—simple dendritic summation
and axonal transmission, Hebbian plasticity on fast and slow
timescales, and anti-Hebbian normalization of synaptic gains. The
modular organization of the emergent system requires updating
at limited numbers of synapses at each time interval—specifically
those asymmetrical connections linking the template antenatal
systems of closed resonance.

The broad range of application of the free energy principle
across disciplinary boundaries is again apparent. Our model
reduces to rules for steady-state equilibrium in a nonlinear
system subject to modification by memory storage. The emergent
patterns of mirror-symmetric flows are reminiscent of patterns
of flow in turbulence and other nonlinear systems (Deco and
Kringelbach 2020; Tsuda and Fujii 2004) and the maximization
of mutual information across brain areas is analogous to the
synthesis of material in Large Language models.

Questions arising
The canonical model versus mirrors and Markov blankets
The canonical models for prediction error minimization within
the cortical column proposed by Bastos et al. (2012, 2020) offer
specific instances of arrangement of neural connections that
would achieve generation of a Markov blanket. However, the
exact circuits proposed in this class of models do not provide
an exhaustive account. They generally suppose the extinction of
excitation by an oppositely directed wave of inhibition, whereas
our account suggests that interactions between excitatory and
inhibitory neurons within each column might at times act to
increase bidirectional exchanges of excitation, rather than, and
as well as, producing cancelation of excitation by inhibition. This
more general explanation of excitatory/inhibitory balance does
not preclude a generally greater level of excitatory pulse activity
on one side of the blanket or the other since it is synaptic flux
that must be symmetrically exchanged, and this can be appro-
priately adjusted by the fast and slow variation of synaptic gains
(equation (2)).

Bastos et al. have also observed that synchronous activity in the
gamma band characterizes activity in layers 2,3, whereas activity
in layers 4/5 falls in the beta range. They interpret this as a con-
sequence of error correction in the upper layers and smoothing
of errors in activity in layers 5,6, enabling an error-corrected and
segregated efferent flow to other cortical and subcortical sites.
Similar considerations would apply to the present model. Notably,
the difference in spectral content between the layers precludes
the existence of a Markov blanket between layers 2,3 and 5,6, in
contrast to that between layer 2,3 and layer 4.

Growth with apoptotic selection versus detailed genetic
controls
As referred to in the Introduction, there are radial gradients for
control of genetic expression and molecular factors operating in
the structural model. This raises unsolved questions about how
these factors might continue to operate in relation to apoptotic
selection of neurons on the basis of maximization of synchrony.

Dorsal versus ventral activation systems
Other matters raised in Luu and Tucker (2023) and earlier
related papers suggest a further conjecture. These concern the
specific actions of the lemnothalamic and collothalamic cortical
activation in mediating reaction to surprise, and the associa-
tions of these systems with REM sleep and SWS, respectively,
including consolidation of memory in sleep. The lemnothalamic
activation system’s essentially excitatory role, observable as
desynchronization of the electrocorticogram, contrasts with the
collothalamic system’s dopamine mediated role, acting to
enhance signal salience (Friston et al. 2012a, 2012b) and thus
increasing active affordance. Such bursts of excitation and
increase of free energy followed by settling again toward
minimum free energy are analogous to the effects of simulated
annealing; the procedure used to establish stable states of
networks under the Metropolis algorithm (Metropolis et al. 1953).
The same roles played by the same systems in REM sleep versus
SWS offer opportunity for more sustained surges and following
suppression of free energy, and might account for an essential
role played by sleep in consolidation of memory.

Testability
The mesoscale model is justified on basis of match to experimen-
tal findings largely in V1, but simulation findings indicate general
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applicability to all cortical areas, providing an incidental solu-
tion of the longstanding mystery of the partially columnar and
partially diffuse organization of cortex. Since the model makes
specific statements about connectivity at mesoscale, it is subject
to ultimate refutation or confirmation by detailed connectome
analysis, directed toward detection of recurrent interwoven units
with Mobius-like connections, and organization in mirror-dual
systems.
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Appendix
Minimization of free energy, F → 0
At each stage of growth, although there are an increasing number,
n, of unidirectional flows of presynaptic flux as synaptic and cell
numbers are increasing, the total autocorrelation, A, during a
relatively short epoch, T, at all lags, τ is

A = 1
2T

n∑
ij

∫ T

0

∫ +∞

−∞
ϕij(t)ϕij (t − τ) dτdt (A1)

and for the n
2 pairs of bidirectional flows, total cross-correlation,

C, is

C = 1
T

n
2∑

ij,ji

∫ T

0

∫ +∞

−∞
ϕij(t)ϕji (t − τ) dτdt (A2)

Therefore, free energy, A − C, is zero when for all i, j, t, τ ,

ϕij(t)ϕij (t − τ) + ϕji(t)ϕji (t − τ) = ϕij(t)ϕji (t − τ) + ϕji(t)ϕij (t − τ)

(A3)

Self-evidencing
Writing ϕij(t), ϕij (t − τ) , ϕji(t), ϕji (t − τ) as a, b, c, d in any order, and
p

(
a, b, c, d

)
as their probabilities in an extended time-series con-

forming to A3, then

p
(
a|b ∪ c ∪ d

)
p

(
b ∪ c ∪ d

) = p
(
b ∪ c ∪ d|a)

p(a) (A4)

So, all possible combinations of flux distribution satisfy Bayes
theorem.

Redundancy and storage
The ratio of total cross-correlation to total autocorrelation of
synaptic flux is a measure of the signal-to-noise ratio for synaptic
information storage, i.e.

S
N = C

A ≤ 1 (A5)

By Nyquist and Shannon–Hartley theorems

D = nlog2

(
1 + S

N

)
(A6)

is the number of bits needed to specify the information stored,
where n is the number of bits necessary to specify all synaptic
states. A corresponding free energy minimizing formulation can
be found in Bogacz (2017) and Friston (2008), where the normaliza-
tion of excitatory and inhibitory synaptic gains is cast as mirroring
or modeling the precision (i.e. signal-to-noise ratio) of prediction
errors.

If m is the number of bits required to represent the information
input from external sources, then 2D−m distinguishable redundant
representations can be stored. D − m ≥ 1 is the lower limit for
the emergence of mirror systems. For n � m and S

N → 1, the
number of redundant representations and mirror systems can be
increasingly large.
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Shape and movement sensitivities of neurons
Let r be vector distance from a representative cell. Afferent synap-
tic flux to the cell from surrounding sources is a function of
distance of separation, relative density of connections in a specific
direction, and lags of transmission, so the afferent flux received
from direction r at time t can be approximated as

ϕafferent (r, t) =
∫ ∞

0
f (r)ϕefferent

(
r, t − |r|

υ

)
dr (A7)

where ϕafferent (r, t) is afferent flux, ϕefferent are fluxes from distant
sources, υ is speed of transmission, and

f (r) = D(r)e−B|r| (A8)

approximates declining connectivity with distance. B is an inverse
length constant and D(r) is a directed amplitude factor weighting
for density of average connectivity in direction r.

From the Fourier transform of equation (A8),

F(k) = DB
π

(
k + B2

) (A9)

where k is wavenumber and F(k)describes the spatial compo-
nents in the field sensed by the afferent cell. Variance of the delays
from efferent sources to afferent presynaptic flux is

var ϕafferent =
(

D
B

)2

(A10)

This variance determines a bandwidth for sensitivities to time
variations in afferent pulses.

Flux exchanges at the boundary of the counterflow Markov
blanket occur along the line of interaction of lateral and depth
presynaptic flows. These receive lateral cortico-cortical afferents
from layers 2,3 and 5,6, and upward flow from layer 4, so their
synaptic afference is

ϕafferent =
∫ ∞

0
f (rL) ϕefferent

(
rL, t − |rL|

υ

)
drL

+
∫ ∞

0
f (rV) ϕefferent

(
rV, t − |rV|

υ

)
drV (A11)

the subscripts L and V indicating parameters of the lateral and
depth flows, respectively. In ventral cortex, the parameter D (rV)

is more biased from cortical depth toward the superficial layers
by the direction of axons from deep to superficial in layer 4, and
parameter Bv is correspondingly higher since extended lateral
flows make relatively little contribution. Since bidirectional con-
nectivity will develop preferentially between cells with a similar
predominance of lateral versus deep-to-superficial axonal distri-
bution, then competitive pressure for survival against apoptosis
will lead to populations of cells in layers 2,3 with differing lateral
axonal range.

As B → large, information regarding all spatial Fourier
components of the input field tend to equality, and afferent
presynaptic pulse variance is small. The cell is sensitive to shape
in the stimulus field and insensitive to movement. As B → small,
afferent information regarding global field low space-frequencies
predominates, and presynaptic pulse variance increases. The
afferent cell is insensitive to stimulus shape but sensitive to
stimulus movement. Therefore, in ventral cortex cell sensitivity
will be toward shape, not movement. For the opposite reasons,

sensitivity is biased toward movement, not shape, in the dorsal
cortex.

Ongoing formation of columns
The characteristics of the two populations of cells that emerge
from the competitive selection can described by

ρα = Nαλα exp [−λαx] (A12)

ρβ = Nβλβ exp [−λβx] (A13)

where ρα (x), ρβ(x) are respective normalized densities of the
axonal trees of long-axon, α cells, and short-axon, β cells, as a
function of distance, x, from their cell somas. The fraction of pre-
synapses generated by the two cell types are Nα , Nβ , and λα , λβ are
their axonal inverse length constants.

Bidirectional connection density, ρα+β , for all cells would be a
maximum if

ρα+β(x) = Nαλα exp [−λαx] + Nβλβ exp [−λβx] (A14)

whereas density of connection in an ultra-small world network,
where inter-soma distance is surrogate for increasing order of
neighbor separation, is given by ρα+β

(
x + k

)−2. Thus, disparity of
connection density, 	(x), of an ultra-small world system and that
of the axonal trees of α and β cells is at best

	(x) = (
x + k

)−2 − (
Nαλα exp [−λαx] + Nβλβ exp [−λβx]

)
(A15)

and competitive processes maximizing synchrony (see below)
force further departures in separation of cell bodies from the
ultra-small optimum.

At a distance, X, from their cell bodies, the population density of
the axonal trees of the short-axon and long-axon cell populations
are equal.

X =
− ln

(
Nαλα

Nβλβ

)
λβ − λα

(A16)

As bidirectional monosynaptic connections emerge, they result
in global-to-local maps in the form of a Reimann projection

P ↔ p where p = ±√−1k (P−p0)
n

|P−p0|n−1 + p0 (A17)

P are cell positions in the global field expressed as a complex
number, and p are corresponding positions of neurons in the local
maps.

(
P − p0

)n
/
∣∣P − p0

∣∣n−1 describes angular multiplication by n in
the projection from P to p. The factor

√−1k defines the rotation
by 90 degrees and scale of the projection created by the arcs of
synapses, chirality is shown + or −, and p0 is the center of a
short-axon cell cluster. The projection of α cells to β cells from
diametrically opposite sides of a local map, each at range X, forces
their synapses to be deployed in arcs radiating from the local
maps center—either deployed on opposite sides of the center—in
which case n = 1—or both radiating from the center on the same
side—in which case n = 2. The n = 1 case is a simple Euclidean
mapping, whereas n = 2 is a mapping analogous to the mapping
of a plane onto a Mobius strip. The latter arrangement permits
greater total synchrony by dint of the longer chains of connection
among the sparse, but cross-connected, short-axon networks.
Angles in the global field from 0 − π are mapped locally from
0 − 2π in the plane view of the column, while global angles from
π − 2π are also mapped (on a separate mesh of cells) from 0 − 2π

in the same view, creating the form of an orientation preference
singularity.
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Homologous positions in the projections from the global map
are also brought into highest contiguity—thus enabling them to
form connections further maximizing their joint synchrony. That
is

pA ↔ pB where pA = +√−1k

(
P − p0A

)2

∣∣P − p0A
∣∣ + p0A

and pB = −√−1k

(
P − p0B

)2

∣∣P − p0B
∣∣ + p0B (A18)

where A and B indicate adjacent local maps (columns).

Information in the global field is stored in the local map,
creating a spatiotemporal image. The mapping can be represented
using complex numbers as

O (P, t) ↔ o
(
±p2, t − |P−p|

ν

)
(A19)

where O is a pattern of activity at the larger (global) mesoscopic
scale and o is the projected image to any given column at the local
scale. Signals pass in either direction with a time lag

∣∣P − p
∣∣ /υ

where ν is the speed of transmission.
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