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Preface

Complex Systems '98 | Complexity Between the Ecos is the fourth in a series of conferences[1, 2, 3]

devoted to the inter-disciplinary study of Complex Systems. This year, we bid particular welcome

to a small, but enthusiatic and growing band of \dynamical economists", who are working to apply

methods and results from complexity theory in their profession. It is now nearly three years since

Steve Keen and others organised a convivial conference entitled Commerce, Complexity and Evolution

that drew together economics and commerce researchers with an interest in this area. This conference

may also be considered a successor of that conference. In the intervening years, a selection of papers

presented at that conference, enhanced by feedback between the researchers, has been collected and

published as a volume of International Symposia in Economic Theory and Econometrics[4]. I hope

that this book wil prove a worthy successor to that tome.

The theme of this conference reects the fact that there is considerable correspondance between

matters biological (or ecological) and economics. Marshall wrote in his Principles:

The Mecca of the economist lies in economic biology rather than in economic dynamics.

That correspondence we now recognise as being Complex Systems. The organisation of this volume

follows this correspondence, from applications of complexity to biology, through general complex-

ity studies (divided into theoretical mathematical approaches and computer modelling) to arrive at

applications of complexity to economics.

Complex Systems studies in it present form is perhaps 15 years old, with some its constituent parts

(eg chaos theory, or fractals) a decade or so older again. We have reached, I believe, a level of maturity

in the �eld where applications dominate over theoretical concerns. We have stopped asking \What is

Complexity?" (there are too many confusing answers here) and like the biologists (who have stopped

asking \What is Life?"), we are now getting down to the business of working out what it is useful for.

It is vitally important, though, that we continue to talk to each other, and keep up that tradition of

inter-disciplinary research that has been the hallmark of Complexity studies to date. For this is one

of the most exciting areas of scienti�c discovery in the closing years of the twentieth century.
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Discrete Dynamical Networks and their Attractor Basins

Andrew Wuensche

Santa Fe Institute, 1399 Hyde Park Road,

Santa Fe, New Mexico 87501 USA,
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Abstract

A key notion in the study of network dynamics is that state-space is connected into basins of

attraction. Convergence in attractor basins correlates with order-complexity-chaos measures on
space-time patterns. A network's \memory", its ability to categorize, is provided by the con-
�guration of its separate basins, trees and sub-trees. Based on computer simulations using the

software Discrete Dynamics Lab[19], this paper provides an overview of recent work describing
some of the issues, methods, measures, results, applications and conjectures.

1 Introduction

Processes consisting of concurrent networks of interacting elements which a�ect each other's state

over time are central to a wide range of natural and arti�cial systems drawn from many areas of

science; from physics to biology to cognition; to social and economic organization; to computation

and arti�cial life; to complex systems in general. The dynamics of these \decision making" networks

depends on the connections and update logic for each element, resulting in complex feedback webs

that are di�cult to treat analytically. Understanding these systems depends on numerical simulations

of idealized computer models known as discrete dynamical networks.

Cellular automata (CA) are a powerful yet simple class of network, characterized by a homogeneous

rule and uniform nearest neighbour connections, providing models to study processes in physical

systems such as reaction-di�usion[15], and self-organization by the emergence of coherent interacting

structures[18]. By contrast, random Boolean networks (RBN) provide models for biological systems

such as neural [3] and genetic[11] networks, where connections and rules must be less constrained. In

addition, the idealized networks themselves hold intrinsic interest as mathematical/physical systems.

A key notion underlying network behavior is that state-space is organized into a number of basins

of attraction, connecting states according to their transitions, and summing up the network's global

dynamics, analogous to Poincar�e's \phase portrait" which provided powerful insights in continuous

dynamics.

The quality of dynamical behaviour of CA, from ordered to chaotic1, is reected by convergence in

attractor basins, their characteristic in-degree , which inuences the length of transients and attractor

cycles. The in-degree of a state is its number of pre-images (predecessors). Bushy subtrees with

high in-degree imply high convergence and order. Sparsely branching subtrees imply low convergence

and chaos. In the case of RBN, attractor basins reveal how the network is able to hierarchically

categorize state-space into separate basins, trees and sub-trees, the network's \memory". Changes to

the network's wiring or rules change the memory categories, providing insights into learning[17, 20].

Traditionally, network dynamics has been investigated by running networks forward from many ini-

tial states to study space-time phenomenology[15], and for statistical measures on basins of attraction[8].

More recently, exact representations of basins of attraction and sub-trees have become accessible,

where algorithms directly compute the pre-images of network states, allowing the network to be run

\backwards" to disclose all possible historical paths[16, 17, 21]. Based on computer simulations using

the software Discrete Dynamics Lab (DDLab)[19], this paper provides an overview of network ar-

chitecture, the characteristics of space-time patterns, the methods and algorithms for reconstructing

1The notion of \chaos" is used here by analogy only to its meaning in chaos theory, although there are many common

properties, for example sensitivity to initial conditions.
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Figure 1: A basin of attraction (one of 15) of a random Boolean network (n=13, k=3) shown in �gure 15.
The basin links 604 states, of which 523 are garden-of-Eden states. The attractor period = 7, and one of
the attractor states is shown in detail as a bit pattern. The direction of time is inwards from garden-of-Eden

states to the attractor, then clock-wise.

basins of attraction, and related parameters, measures, results, applications and conjectures, placing

the dynamics along particular trajectories in the context of global dynamics.

2 Network Architecture

Discrete dynamical networks consist of a set of elements (cells) taking inputs from each other, and

changing their cell-state according to some logical function on their inputs. The connectivity is usually

sparse. The cell-state ranges over a discrete alphabet, in this paper just a binary alphabet (0 or 1) is

considered. The updating is generally synchronous, though updating sequentially in a preset order or

partial order is also of interest. A partial order is a sequence of sets of cells, where updating within

each set is synchronous.

A CA is a very regular network, sometimes described as an arti�cial universe with its own physics.

Cells take inputs from their nearest (and next nearest) neighbours (local \wiring") according to a

�xed neighbourhood template, so issues of network geometry and boundary conditions are crucial.

The same logical rule is applied everywhere. Figure 2 shows neighbourhood templates for 1d, 2d and

3d as applied in DDLab. An RBN relaxes these constraints, allowing arbitrary \wiring" and rules,

as in �gure 3. The number of input wires available to each cell may also vary. However, an RBN

architecture can be biased in countless of ways, described in section 4, to constrain wiring or rules. For

example an RBN wiring with a constant rule, or local wiring with mixed rules can be a generalisation

of a CA.

The wiring and rules can be tailored to very speci�c requirements, as in models of neural networks

in the cortex[3]. The wiring can be constrained within a �xed distance from each cell, which confers

meaning to network geometry and boundary conditions, whereas with completely arbitrary wiring the

geometry just provides a convenient way of representing the network. A rule mix can be constrained

to sample just a few rules or rules with a particular bias, as in genetic network models[5].

Hybrid networks can be constructed by putting an RBN within a CA or vice-versa. Networks of

networks can be set up, with weak interactions so they perturb each other's dynamics. The function-

ality for setting up networks in these ways is present in DDLab.

The network parameters can be listed as follows:
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1d. k=0{13. The extra asymmetric cell
in even k is on the right. The wiring is

shown between two time-steps.

2d, k=2{13 (k=0{1 as in 1d). Note that
k=6 and k=7 de�ne an e�ectively trian-
gular grid by changing between odd and

even rows. The classical von Neumann
and Moore neighbourhoods are indicated.

3d, k=6{13 (k=0{5 as in 2d), shown look-
ing up into an axonometric cage.

Figure 2: 1d, 2d and 3d neighbourhood
templates de�ned in DDLab. In 2d and

3d, to maximize symmetry, even k does
not include the central target cell.

Figure 3: Network wiring. left: 1d, k=3,
the wiring is shown between two time-

steps. centre: 2d, k=5. right: 3d, k=7.
In RBN, cells anywhere in the network are
wired back to each position in the \pseudo-

neighbourhood".

size: The system size n, the number of cells in the network.

connectivity: The number of input wires per cell k, or the k-mix if the connectivity is not homogeneous.

The connectivity is usually sparse, i.e. k� n.

neighbourhood: The neighbourhood template for CA, or the pseudo-neighbourhood for RBN, as in �gure
2.

wiring: For RBN, how each cell is wired relative to its pseudo-neighbourhood.

rule: The rule for CA, or the rule scheme scheme for RBN. Rules are generally de�ned as look-up tables.

updating: The updating, usually synchronous. Alternatively sequential according to a de�ned order or
partial-order.

geometry: The underlying geometry and boundary conditions, 1d, 2d, 3d, orthogonal or triangular, or
some other geometry, for example a hypercube. This is essentially a function of the the neighbourhood
template and wiring scheme. The geometry for graphically representing the network may not necessarily
correspond to the underlying geometry.

A CA neighborhood, or RBN pseudo-neighborhood, of size k has 2k permutations of values. The
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most general expression of the Boolean function or rule is a lookup table (the rule-table) with 2k

entries, giving 22
k

possible rules. Sub-categories of rules can also be expressed as simple algorithms,

concise AND/OR/NOT logical statements (which could be implemented as combinatorial circuits),

totalistic rules[14] or threshold functions.

By convention[14] the rule table is arranged in descending order of the values of neighborhoods,

and the resulting bit string converts to a decimal or hexadecimal rule number. For example the k=3

rule-table for rule 30,

7 6 5 4 3 2 1 0 . . . neighbourhoods, decimal
111 110 101 100 011 010 001 000 . . . neighbourhoods, binary
0 0 0 1 1 1 1 0 . . . outputs, the rule table

The rule-table for other k values are set out in a corresponding way. k � 4 rules are referred to

by their hexadecimal rule numbers. k � 3 rules are usually referred to by their more familiar decimal

rule numbers.

For a given geometry, the behaviour space of CA depends on the size of rule-space, 22
k

, though

rule symmetries e�ectively reduce this number. For example, the 22
3

= 256 rules in k = 3 rule-space

reduce to 88 equivalence classes[16]. The behaviour space of RBN is much greater, taking into account

possible permutations of wiring and rule schemes, but there are also RBN equivalence classes relating

to these permutations[10]. In general, the number of e�ectively di�erent RBN of size n cannot exceed

(2n)
(2n)

(see section 9).

3 Trajectories and space-time patterns

A state of a discrete dynamical network is the pattern of 0s and 1s at a given time-step. A trajectory

is the sequence of states at successive time-steps, the systems local dynamics. Examples of 1d, 2d and

3d space-time patterns are shown in �gures 4, 5 and 6. A time axis is only possible in representations

of 1d or 2d systems. As well as showing cells as white(0) or black(1), an alternative presentation

shows cells in colors (or shades) according to their look-up neighbourhood (�gure 4). This allows the

most frequently occurring colors to be progressively �ltered to show up gliders and other space-time

structures as in �gure 5, which can be done interactively, on-the-y, in DDLab for any CA. This is an

alternative method to the \computational mechanics" approach[4].

Figure 4: Space-time patterns of a CA (n=24, k = 3, rule 90). 24 time-steps from an initial state with a
single central 1. Two alternative presentations are shown. Left: cells by value, white=0 black=1. Right:
cells colored (or shaded) according to their look-up neighbourhood. This allows �ltering, and improves the

clarity of space-time patterns in 2d and 3d.

3.1 Glider dynamics in CA

A large body of literature is devoted to the study space-time patterns in CA. \Glider" or particle

dynamics, where coherent con�gurations emerge and interact, provide a striking instance of self-

organization in a simple system. Such dynamics are classi�ed as complex, in contrast to ordered or
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Figure 5: Space-time patterns of the k=3 rule 54 (n=150) from the same initial state showing interacting

gliders, which are embedded in a complicated background. Left: cells by value. Right: cells by neighbourhood
lookup, with the background �ltered.

(a) 2d 100x100 triangular grid (b) 2d 56x56 +time (c) 3d 20x20x20

Figure 6: Examples of 2d and 3d CA space patterns. (a) is an evolved time-step of a 2d CA on a k=7
triangular lattice with a reaction-di�usion rule. (b) is the 2d game-of-Life on a 56 � 56 grid, but with a time
dimension added, similar to a 1d space-time pattern. The initial state is set with a number of gliders. (c) is

a time-step of a 3d k=7 CA with a randomly selected rule and starting from a single central 1.

chaotic[14], a well know example being Conway's 2d \game-of-Life"[1]. Because glider dynamics is

relatively rare in CA rule spaces, much study has focused on the few known complex rules in 1d

CA. However, an unlimited source of examples are now available, found by the methods described in

sections 3.2 { 3.3.

Gliders are embedded within a uniform or periodic background or domain, and propagate at various

velocities up the system's speed of light set by the neighbourhood diameter. Gliders are interpreted as

dislocation in the background or as the boundary reconciling two di�erent backgrounds[4, 18]. Gliders

may absorb or eject sub-gliders (glider-guns). Compound gliders may emerge made up of sub-gliders

re-colliding periodically. Figure 7 shows some examples.

Glider dynamics has been interpreted as occurring at a phase transition in rule-space between

order and chaos[9], relative to the rule parameters �[9] and Z[16] (see section 6.2). Input-entropy

provides a measure on space-time dynamics that allows the automatic classi�cation of rule-space (see

below).

3.2 Input entropy

Keeping track of the frequency of rule-table look-ups (the k-block frequency, or \look-up frequency")

in a window of time-steps, provides a measure, the variance of input-entropy over time, which is used

to classify 1d CA automatically for a spectrum of ordered, complex and chaotic dynamics[22]. The

method allows screening out rules that support glider dynamics and related complex rules, giving

an unlimited source for further study. The method also shows the distribution of rule classes in the

rule-spaces of varying neighbourhood sizes. The classi�cation produced seems to correspond to our

subjective view of space-time dynamics, and to global measures on the \bushiness" of typical sub-trees
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(a)7e8696de (b)89ed7106 (c)89ed7106 (d)b51e9ce8 (e)b51e9ce8

Figure 7: Gliders, glider guns and compound gliders in k=5 1d CA . (c) is a compound glider made up of two
independent gliders locked into a cycle of repeating collisions. (d) is a glider with a period of 106 time-steps.
(e) is a compound glider-gun.

in attractor basins, characterized by the distribution of in-degree sizes in their branching structure.

The look-up frequency can be represented by a histogram (�gure 8) which distributes the total of

n�w lookups among the 2k neighbourhoods (shown as the fraction of total lookups), where n=system

size, w=the window of time-steps de�ned and k=neighbourhood size. The Shannon entropy of this

frequency distribution, the \input-entropy" S, at time-step t, for one time-step (w=1), is given by,

St = �P2k

i=1

�
Qt
i

n
� log

�
Qt
i

n

��
, where Qt

i is the look-up frequency of neighbourhood i at time t. In

practice the measures are smoothed by being taken over a moving window of time-steps (w=10 in

�gure 8).

Figure 8 shows typical examples of ordered, complex and chaotic dynamics in 1d CA, with input-

entropy plots and a snapshot of the lookup frequency histogram alongside. In ordered dynamics the

entropy quickly settles at a low value with low or zero variance. In chaotic dynamics the entropy settles

at a high value, but again with low variance. Both ordered and chaotic dynamics have low input-

entropy variance. By contrast, in complex dynamics the entropy uctuates erratically both up and

down for an extended time, because glider collisions produce new gliders, often via a temporary zone

of chaotic dynamics. Complex rules can be recognized by eye, subjectively. Input-entropy variance

provides a non-subjective measure for recognizing complex rules automatically.

A related method of visualizing the entropy-variance is to plot input-entropy against the density of

1s relative to a moving window of time-steps. Each rule produces a characteristic cloud of points which

lie within a parabolic envelope because high entropy is most probable at medium density, low entropy

at either low or high density. Each complex rule produces a plot with its own distinctive signature,

with high input-entropy variance. Chaotic rules, on the other hand, will give a at, compact cloud

at high entropy (at the top of the parabola). For ordered rules the entropy rapidly falls o� with very

few data points because the system moves rapidly to an attractor.

3.3 Automatically classifying rule-space

To distinguish ordered, complex and chaotic rules automatically, the mean input-entropy taken over a

span of time-steps is plotted against the standard deviation of the input entropy. Figure 10 summarizes

how random samples of k=5, 6 any 7 rules where classi�ed by this method. For each rule, the data

was gathered from 5 runs from random initial states, for 430 time-steps, discounting the �rst 30 to

allow the system to settle, with w=5 as the size of the moving window of time-steps.

Chaotic rules are concentrated in the top left corner \tower", ordered rules on the left with lower

entropy. Complex rules have higher standard deviation, and are spread out towards the right. There

is a fairly distinct boundary between ordered and chaotic rules, but a gradual transition from both

towards the complex rules. As the standard deviation decreases glider interactions either become

more frequent, transients longer, tending towards chaos, or less frequent, transients shorter, tending

towards order. The plots for k=6 and k=7 rules indicate a greater frequency of chaotic rules at the

expense of ordered and complex rules for greater k. The decrease in ordered rules is especially marked.
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Figure 8: Typical 1d CA Space-time patterns showing ordered, complex and chaotic dynamics (n=150, k=5,

rule numbers shown in hex). Alongside each space-time pattern is a plot of the input-entropy, where only
complex dynamics (centre) exhibits high variance because glider collisions make new gliders.

To check whether the expected dynamics (recognized subjectively) corresponds to the measures

as plotted, the dynamics of particular rules at di�erent positions on the plots can be easily examined

in DDLab, for example with a mouse click on the scatter plot. Preliminary scans con�rm that the

expected behaviour is indeed found, but further investigation is required to properly demarcate the

space between ordered, complex and chaotic rules and to estimate the proportion of di�erent rule

classes for di�erent k.

Input entropy is a local measure on the space-time patterns of typical trajectories. The distribu-

tion of the rule samples according to these local measures may be compared with global measures

on convergence in attractor basins, G-density and the in-degree frequency, described in section 8.

Preliminary results indicate a strong relationship between these global measures and the rule sample

input-entropy plots.

4 RBN space-time patterns

In contrast to CA, glider dynamics in general cannot occur in RBN because of their irregular archi-

tecture. Figure 11 (left) shows glider dynamics degrading as local wiring is progressively scrambled.

An alternative order-chaos notion in RBN is the balance between \frozen", stabilized, regions and

changing regions in the space-time pattern[8]. Stable regions are characteristic of RBN with low con-

nectivity, k � 3, because rules which induce stability are relatively frequent in these rule-spaces. To

induce stability for k � 4, where chaotic rules become overwhelmingly predominant, biases on rules

must be imposed, low � (see section 6.2) or a high proportion of \canalizing" inputs. In a rule's lookup
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Figure 9: Entropy-density scatter plot. Input-

entropy is plotted against the density of 1s relative
to a moving window of time-steps w=10. k=5,
n=150. Plots for a number of complex rules from
the automatic sample (section 3.3) are show su-

perimposed, each of which has its own distinctive
signature, with a marked vertical extent, i.e. high
input-entropy variance. About 1000 time-steps

are plotted from several random initial states for
each rule.

Figure 10: left: Clas-
sifying a random sam-
ple of k=5 rules by plot-

ting mean entropy against
standard deviation of the
entropy, with the fre-

quency of rules within a
128 � 128 grid shown ver-
tically. below: Equivalent

plots for samples of k=6
and 7 rules.

table, an input wire is canalizing if a particular input (0 or 1) determines, by itself, the neighbour-

hood's output. A rule's degree of canalization can be from 0 to k, for the same output; for the network

it is the percentage of all inputs that are canalizing, C. An RBN's order-chaos characteristics, for

varying C, are captured by the measures illustrated in �gure 12, and described below.

The \Derrida plot"[2], is analogous to the Lyapunov exponent in continuous dynamics, and mea-

sures the divergence of trajectories based on normalized Hamming distance H , the fraction of bits

that di�er between two patterns. Pairs of random states separated by Ht, are independently iterated

forward by one (or more) time-steps. For a sample of random pairs, the average Ht+1 is plotted

against Ht, and the plot is repeated for increasing Ht (from 0 to 0.3 in �gure 12). A curve above the

main diagonal indicates divergent trajectories and chaos, below | convergence and order. A curve

tangential to the main diagonal indicates a balance. A related measure is the distribution of \damage

spread" resulting from a single bit change at a random position in a random state, for a sample of

random states. The size of damage is measured once it has stabilized, i.e. not changed for say 5

time-steps. A histogram (�gure 12) is plotted of damage size against the frequency of sizes. Its shape

indicates order or chaos in the network, where a balance between order and chaos approximates to

a power law distribution. Results by these measures for k = 5, indicate a balance at C = 52% (see

�gure 12). There are further measures on basins of attraction as in �gure 14.

These methods are applied in the context of RBN models of genetic regulatory networks[8] dis-
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Figure 11: Space-time patterns for intermediate 1d architecture, from CA to RBN. n=150, k=5, 150 time-
steps from a random initial state. (a) Starting o� as a complex CA (rule 6c1e53a8 as in �gure 8), 4% (30/750)

of available wires are randomized at 30 time-step intervals. The coherent pattern is progressively degraded.
(b) A network with local wiring but mixed rules, vertical features are evident. (c) RBN, random wiring and
mixed rules, with no bias, shows maximal chaotic dynamics.

Figure 12: Order-chaos measures for a RBN

36 � 36, k = 5. C = the percentage of canaliz-
ing inputs in the randomly biased network. top

left: frozen elements that have stabilized for 20

time-steps are shown, 0s-green, 1s red, otherwise
white, for C=25% and 52%. top right: the log-
log \damage spread" histogram for C=52%, sample
size about 1000. left: the Derrida plot for C=0%,

25%, 52%, and 75%, for 1 time-step, Ht=0-0.3, in-
terval = 5, sample for each Ht = 25.

cussed in section 10. The conjecture is that evolution maintains genetic regulatory networks marginally

on the ordered side of the order-chaos boundary to achieve stability and adaptability in the pattern

of gene expression which de�nes the cell type[5].

5 Basins of Attraction

The idea of basins of attraction in discrete dynamical networks is summarized in �gure 13. Given

invariant network architecture and the absence of noise, a discrete dynamical network is deterministic,

and follows a unique (though in general, unpredictable) trajectory from any initial state. When a state

that occurred previously is revisited, which must happen in a �nite state-space, the dynamics becomes

trapped in a perpetual cycle of repetitions de�ning the attractor (state cycle) and its period (minimum

one, a stable point).

These systems are dissipative. A state may have multiple \pre-images" (predecessors), or none,

but just one successor. The number of pre-images is the state's \in-degree". In-degrees greater

than one require that transient states exist outside the attractor. Tracing connections backwards

to successive pre-images of transient states will reveals a tree-like topology where the \leaves" are

states without pre-images, known as garden-of-Eden states. Conversely, the ow in state-space is
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For a network size n, an example of one of its states B might be

1010 : : : 0110. State-space is made up of all 2n states, the space of

all possible bitstrings or patterns.

Part of a trajectory in state-space, where C is a successor of B, and

A is a pre-image of B, according to the dynamics of the network.

The state B may have other pre-images besides A, the total is the

in-degree. The pre-image states may have their own pre-images

or none. States without pre-images are known as garden-of-Eden

states.

Any trajectory must sooner or later encounter a state that occurred

previously - it has entered an attractor cycle. The trajectory lead-

ing to the attractor a transient. The period of the attractor is the

number of states in its cycle, which may be only just one | a point

attractor.

Take a state on the attractor, �nd its pre-images (excluding the

pre-image on the attractor). Now �nd the pre-images of each pre-

image, and so on, until all garden-of-Eden states are reached. The

graph of linked states is a transient tree rooted on the attractor

state. Part of the transient tree is a subtree de�ned by its root.

Construct each transient tree (if any) from each attractor state.

The complete graph is the basin of attraction. Some basins of

attraction have no transient trees, just the bare \attractor".

Now �nd every attractor cycle in state-space and construct its

basin of attraction. This is the basin of attraction �eld containing

all 2n states in state-space, but now linked according to the dy-

namics of the network. Each discrete dynamical network imposes

a particular basin of attraction �eld on state-space.

Figure 13: State space and basins of attraction.

convergent. Measures of convergence are G-density, the fraction of states that are garden-of-Eden,

and the distribution of in-degrees, described in section 8. The set of transient trees rooted on the

attractor is its basin of attraction (�gure 1). The local dynamics connects state-space into a number

of basins, the basin of attraction �eld, representing the systems global dynamics (�gure 15).

6 Computing Pre-images

Attractor basins are constructed with algorithms that directly compute the pre-images of network

states[16, 17, 21]. This allows the network's dynamics, in e�ect, to be run backwards in time. Backward

trajectories will, as a rule, diverge. Di�erent reverse algorithms apply to networks with di�erent sorts

of connectivity. The most computationally e�cient algorithm applies to 1d networks with local wiring,

taking advantage of the regularity of connections. The wiring must be uniform, as for 1d CA, but

the network may have a mix of rules. Analogous algorithms could be derived for 2d and 3d networks,

but have not been implemented. An alternative algorithm is required for RBN with their non-local

connections and possibly mixed k. This algorithm also applies to CA of any dimension or geometry,

as CA are just a sub-class of RBN.

Provided k � n, these methods are in general orders of magnitude faster than the brute force

method (section 9.1), constructing an exhaustive map resulting from network dynamics, a method

which rapidly becomes intractable with increasing network size and so is limited to very small systems.

However, the exhaustive method may be applied to all types of network, and also allows the attractor
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Figure 14: Statistical data on attractor basins for a large network; a 2d RBN 20�20, k=5, with fully random
wiring and a fraction of canalizing inputs C=50%. The histogram shows attractor types and the frequency

of reaching each type from 12,360 random initial states, sorted by frequency. 46 di�erent attractors types
where found, their periods ranging from 4 to 102, with average transient length from 21 to 113 time-steps.
The frequency of arriving at each attractor type indicates the relative size of the basin of attraction.

basins of random maps to be constructed, as described in section 9. The agreement of these three

independent methods, and other checks, give considerable con�dence in the accuracy of the pre-image

computations.

Some basic information on attractor basin structure can be found by statistical methods, �rst ap-

plied by Walker[13], as shown in �gure 14. These are also implemented in DDLab and are appropriate

for large networks. Trajectories are run forward from many random initial states looking for a repeat

in the network pattern to identify the range of attractor types reached. The frequency of reaching a

given attractor type indicates the relative size of the basin of attraction, and other data are extracted

such as the number of basins, and the length of transients and attractor cycles.

6.1 The CA reverse algorithm

Consider a 1d CA of size n (indexed n � 1 : : : 0) and neighbourhood k. To �nd the all pre-images

of a state A, let P be a \partial pre-image" where at least k � 1 continuous bits (on the left) up to

and including Pi, are known. Now �nd the next unknown bit to the right, Pi�1, consistent with the

rule-table. (� indicates known, ? unknown, bits),
Pi+1 Pi Pi�1

. . . partial pre-image P . . . � � ? compare the outputs of Pi+1; Pi; ?

� with each other and with Ai

. . . known state A . . . Ai

If k = 3 (for example), the bitstring Pi+1; Pi; ? corresponds to two neighbourhood entries in the

rule-table. When their outputs, T1 and T2, are compared with each other and with Ai there are three

possible consequences. The permutation is either deterministic, ambiguous or forbidden.

1. deterministic: if T1 6= T2, then Pi�1 is uniquely determined, as there is only one valid neigh-

bourhood with the output Ai.

2. ambiguous: if T1 = T2 = Ai, then both 0 and 1 are valid solutions for Pi�1. The partial

pre-image must be duplicated, with Pi�1 = 0 in one version and Pi�1 = 1 in the other.

3. forbidden: if (T1 = T2) 6= Ai, then Pi�1 has no valid solution.

If forbidden (3) the partial pre-image P is rejected. If deterministic or ambiguous (1 or 2) the

procedure is continued to �nd the next unknown bit to the right. However, in the ambiguous case

(2), both alternative partial pre-images must be continued. In practice one is assigned to a stack

of partial pre-images to be continued at a later stage. As the procedure is re-applied to determine

each successive unknown bit towards the right, each incidence of ambiguous permutations will require

another partial pre-image to be added to the stack. Various re�nements can limit this growth.



14 Discrete Dynamical Networks and their Attractor Basins

Figure 15: The basin of attraction �eld of a random Boolean
network (n=13, k=3). The 213 = 8192 states in state space
are organized into 15 basins, with attractor periods ranging

between 1 and 7. The number of states in each basin is: 68,
984, 784, 1300, 264, 76, 316, 120, 64, 120, 256, 2724, 604, 84,
428. Figure 1 shows the arrowed basin in more detail. Right:

the network's architecture, its wiring/rule scheme.

cell wiring rule

12 10,1,7 86

11 6,2,9 4

10 10,10,12 196

9 2,10,4 52

8 5,6,8 234

7 12,5,12 100

6 1,9,0 6

5 5,7,5 100

4 4,11,7 6

3 8,12,12 94

2 11,6,12 74

1 6,5,9 214

0 12,9,6 188

The procedure is continued to the right to overlap the assumed start string, to check if periodic

boundary conditions are satis�ed; if so the the pre-image is valid. The procedure is re-applied to

each partial pre-image taken from the partial pre-image stack, starting at the �rst unknown cell.

Each time an ambiguous permutation (2) occurs a new partial pre-image must be added to the stack,

but the stack will eventually be exhausted, at which point all the valid pre-images containing the

assumed start string will have been found. The procedure is applied for 2k�1 start strings, assuming

the di�erent possible values of the �rst k � 1 bits. The reverse algorithm is applied from left to right

in DDLab, but is equally valid when applied from right to left. Examples are given in [16, 21].

6.2 The Z parameter

A by product of the CA reverse algorithm is the probability of the next unknown bit being deterministic

(section 6.1(1)). Two versions of this probability are calculated from the rule-table. Zleft for the re-

verse algorithm applied from left to right, and Zright for the converse. The Z parameter is the greater

of these values. For Z=1 it can be shown[16] that for any system size n, the maximum in-degree,

Imax � 2k�1, because the next unknown bit is always uniquely determined, so the assumed start string

of length k � 1 may generate at most 2k�1 pre-images. If only one of Zleft or Zright=1, Imax < 2k�1,

because at least one assumed start string must be forbidden (section 6.1(3)). At the other extreme,

for Z=0, all state space converges on the state all-0s or all-1s in one step. For high Z, low in-degree

(relative to system size n) is expected in attractor basins, growing at a slow rate with respect to n.

Conversely, for low Z, high relative in-degree is expected growing quickly with respect to n. High Z
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predicts low convergence and chaos, low Z predicts high convergence and order.

The 2k neighborhoods of size k, each indexed k � 1 : : : 0, each have an output T (0 or 1) which

makes up the rule-table (section 2), and may be expressed as ak�1; ak�2; : : : a1; a0 ! T . To calculate

Zleft from the rule table, let nk be the count of rule-table entries belonging to deterministic pairs,

such that,

ak�1; ak�2; : : : a1; 0! T and ak�1; ak�2; : : : a1; 1! T (not T )

The probability that the next bit is determined because of the above is given by, Rk = nk=2
k. This

is a �rst approximation of Zleft.

Let nk�1 be the count of rule-table entries belonging to deterministic 4-tuples (where \?" may be

0 or 1), such that,

ak�1; ak�2; : : : a2; 0; ?! T and ak�1; ak�2; : : : a2; 1; ?! T

The probability that the next bit is determined because of the above is given by, Rk�1 = nk�1=2
k.

This count is repeated if necessary for deterministic 8-tuples where Rk�2 = nk�2=2
k, 16-tuples, 32-

tuples, : : : up to the special case of just one 2k-tuple which occupies the whole rule-table. These are are

independent non-exclusive probabilities that the next bit is determined. The union of the probabilities

Rk [Rk�1 [Rk�2 : : : = Zleft, is given by the following expression (the order of the probabilities makes

no di�erence to the result),

Zleft = Rk +Rk�1(1�Rk) +Rk�2(1�Rk +Rk�1(1�Rk)))

+ Rk�3(1� (Rk�2(1�Rk +Rk�1(1� Rk))))) + � � �

which simpli�es to,

Zleft = Rk +Rk�1(1�Rk) +Rk�2(1�Rk�1)(1�Rk) +Rk�3(1�Rk�2)(1�Rk�1)(1�Rk) + � � �

and may be expressed as2 Zleft = Rk+
Pk�1

i=1 Rk�1

�Qk
j=k�i+1(1�Rj)

�
where Ri = ni=2

k, and ni

= the count of rule-table entries belonging to deterministic 2k�i-tuples. A converse procedure gives

Zright, and the Z parameter = the greater of Zleft and Zright. Examples are given in [16, 21].

By virtue of being a convergence parameter, Z is also an order-chaos parameter varying from

0(order) { 1(chaos). Z can be compared with Langton's[9] well known � parameter3. � is an order-

chaos parameter for CA which may have values greater than binary, and measures the density of

\non-quiescent" outputs in a rule-table, so for just binary CA, � = c=2k where c=the count of 1s a

rule-table on k inputs. � varies between 0 (order) { 0.5 (chaos) { 1 (order). To allow Z and � to be

compared, a normalized version of binary � is de�ned[16], �ratio = 2� cmin=2
k where cmin is the count

of 0s or 1s in the rule-table, whichever is less. �ratio then varies from 0 (order) { 1 (chaos) just as Z.

Plots of G-density against both the �ratio and Z parameters, showing the discrepancies as well

as similarities, are shown in �gure 16, for the 256 k = 7 totalistic rules, which reduce to 136 non-

equivalent rules in 72 clusters (having equal �ratio and Z). Points plotted in the top right corner of

the �ratio graph represent �ratio values that do not correspond to behaviour as expected.

6.3 The RBN reverse algorithm

Consider an RBN of size n. Find all pre-images of a state A, (An�1; An�2; : : : ; A0). Each network ele-

ment Ai, has a pseudo-neighbourhood size ki (assuming a mixed k network), indexed ki � 1; ki � 2; : : : ; 0,

a wiring scheme Wi, (wki�1; wki�2; : : : ; w0), where wj is a number between n� 1 and 0, the position

of the wire connection from the jth branch of the pseudo-neighbourhood, and a rule-table Ri.

2Acknowledgment and thanks to Guillaume Barreau and Phil Husbands at COGS, Univ. of Sussex, for deriving this

expression.
3Other versions of binary � are \internal homogeneity" introduced earlier by Walker[13], and the P parameter,

applied for RBN, which varies between 0.5 (chaos) { 1 (order). P = cmax=2
k where cmax is the count of 0s or 1s in

the rule-table, whichever is more, P = 1��ratio=2. A number of alternative order-chaos parameters have also recently

been proposed, for example by Marty Zwick and Burton Voorhees.
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Figure 16: G-density against
both �ratio and Z for the set

of k = 7 totalistic rules, n=16,
for Z � 0:25. The complete
basin of attraction �eld was gen-

erated for each rule and garden-
of-Eden states counted.

Figure 17: Computing RBN pre-images.
The changing size of a typical partial pre-
image stack at successive elements. n=24,

k=3.

To �nd the all pre-images of A, let P , (Pn�1; Pn�2; : : : ; P0), be a candidate pre-image consisting

of empty network elements, as yet unassigned to either 0 or 1. Starting with an element of A, Ai,

assign bits from all valid pseudo-neighbourhoods in the rule-table Ri, i.e. that are consistent with Ai,

to separate copies of P according to the wiring scheme Wi. As there will be a mix of 0s and 1s in

Ri, only some of the 2ki possible pseudo-neighbourhoods will be valid. This will produce a stack of

\partial pre-images" with some bits allocated and the remainder empty.

Now repeat the procedure for another element of A, say Ai�1, but this time independently for each

partial pre-image previously created. If the allocation of a bit to a given partial pre-image conicts

with the bit already assigned, then the partial pre-image is rejected. Otherwise, the partial pre-image

is added to the next generation of partial pre-images in a new stack. The allocation will be valid

if it is made to an \empty" element, or to an allocated element with an equal bit. Valid allocation

increases the size of the partial pre-image stack, conicts reduce the size of the stack.

This procedure is repeated in turn for the remaining network elements of A. If the stack size is

reduced to zero at any stage A has no pre-images. The algorithm works for any ordering of elements

in A, though to minimizes the growth of the partial pre-image stack, the order should correspond to

the greatest overlap of wiring schemes. The changing size of the stack at successive elements can be

displayed in DDLab, an example is shown in �gure 17. When the procedure is complete, the �nal

pre-image stack may still have empty network elements, which did not �gure in any wiring scheme.

These are duplicated so that all possible con�gurations at empty element positions are represented.

The resulting pre-image stack is the complete set of pre-images of A without duplication.

The reverse algorithm for RBN works for networks with any degree of intermediate architecture

between RBN and CA, including CA of any dimension. More detailed explanations of the algorithm

are given in [17, 21].

7 Constructing and portraying attractor basins

To construct a basin of attraction containing a particular state, the network is iterated forward from

the state until a repeat is found and the attractor identi�ed. The transient tree (if it exists) rooted

on each attractor state is constructed in turn. Using one of the reverse algorithms, the pre-images

of the attractor state are computed, ignoring the pre-image lying on the attractor itself. Then the

pre-images of pre-images are computed, until all \garden-of-Eden" states have been reached.

In a similar way, just a subtree may be constructed rooted on a state. Because a state chosen at

random is very likely to be a garden-of-Eden state, it is usually necessary to run the network forward

by at least one time-step, and use the state reached as the subtree root. Running forward by more

steps will reach a state deeper in the subtree so allow a larger subtree to be constructed.
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For CA, a considerable speedup in computation is achieved by taking advantage of \rotational

symmetry"[16], a property of the regularity of CA and periodic boundary conditions, resulting in

equivalent subtrees and basins.

Attractor basins are portrayed as state transition graphs, vertices (nodes) connected by directed

edges. States are represented by nodes, by a bit pattern in 1d or 2d, or as the decimal or hex value of

the state. In the graphic convention[16, 19], the length of edges decreases with distance away from the

attractor, and the diameter of the attractor cycle approaches an upper limit with increasing period.

The direction of edges (i.e. time) is inward from garden-of-Eden states to the attractor, and then

clockwise around the attractor cycle, as shown in �gure 1. Typically, the vast majority of states in a

basin of attraction lie on transient trees outside the attractor, and the vast majority of these states

are garden-of-Eden states.

8 Attractor basin measures

Figure 18: The G-density plotted

against system size n, for the ordered,
complex and chaotic rules shown in �g-
ures 8 and 19. The the entire basin of

attraction �eld was plotted for n=7 to
22, and garden-of-Eden states counted.
The relative G-density and rate of in-

crease with n provides a simple mea-
sure of convergence.

Measures on attractor basins include the number of attractors, attractor periods, size of basins,

characteristic length of transients and the characteristic branching within trees. The last in particular

gives a good measure of the convergence of the dynamical ow in state-space, where high convergence

indicates ordered, and low convergence indicates chaotic dynamics.

The simplest measure that captures the degree of convergence is the density of garden-of-Eden

states[18], G-density, counted in attractor basins or sub-trees, and the rate of increase of G-density

with n as shown in �gure 18. A more comprehensive measure is the in-degree frequency distribution,

plotted as a histogram. The in-degree of a state is the number of its immediate pre-images. This can

be taken on a basin of attraction �eld, a single basin, a subtrees, or on just part of a subtree for larger

systems. Subtrees are portrayed as graphs showing trajectories merging onto the sub-tree root state.

Examples of in-degree histograms for typical sub-trees of ordered, complex, and chaotic rules are

shown in �gure 19. The horizontal axis represents in-degree size, from zero (garden-of-Eden states)

upwards, the vertical axis represents the frequency of the di�erent in-degrees. The system size n=50

for the complex and chaotic rules. For very ordered rules in-degrees become astronomical. The ordered

rule shown is only moderately ordered, however the system size was reduced to n=40 to allow easier

computation.

From the preliminary data gathered so far, the pro�le of the in-degree histogram for di�erent

classes of rule is as follows:

Ordered rules: Very high garden-of-Eden frequency and signi�cant frequency of high in-degrees.

High convergence.

Complex rules: Approximates a power law distribution. Medium convergence.

Chaotic rules: Lower garden-of-Eden frequency compared to complex rules, and a higher fre-

quency of low in degrees. Low convergence.
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Ordered dynamics. Rule 01dc3610, n=40, Z=0.5625,

�ratio=0.668. right: The complete sub-tree 7 levels deep, with

58153 nodes, G-density=0.931.

Complex dynamics. Rule 6c1e53a8, n=50, Z=0.727,

�ratio=0.938. right: The sub-tree, stopped after 12 levels,

with 144876 nodes, G-density=0.692.

Chaotic dynamics. Rule 994a6a65, n=50, Z=0.938,

�ratio=0.938. right: The sub-tree, stopped after about 75

levels, with 9446 nodes, G-density=0.487.

Figure 19: Ordered { Complex { Chaotic CA dynamics.
The space-time patterns of the rules are shown in �gure

8. The in-degree histogram of a typical sub-tree shown
in normal and log-log form.

9 Random Maps

The attractor basins of discrete dynamical networks can be put into the wider context of random

graph theory. CA belong to the set of RBN which in turn belong to the set of random directed

graphs with out degree one, known as random maps. This is a mapping of the Boolean hypercube of

sequences of length n (i.e. a set Qn
2 of size 2n comprising all binary strings of length n), a mapping

from Qn
2 ! Qn

2 . The structures found in random maps correspond to those in the attractor basins of

discrete dynamical networks, where each separate component of the graph is made up of trees rooted

on just one closed cycle. The structures can be computed in DDLab just as the attractor basins of

CA or RBN.

A random map can be constructed by assigning a successor to each state in state-space, i.e.

independently assign one successor (or image) V� also belonging to Qn
2 , chosen at random (or with

some bias) to each element Vi of the set Q
n
2 . There are (2

n)
(2n)

possible mappings. The mapping is

represented below as 2n pairs of strings (or states in state-space), where each image V� represents a

possibly di�erent member of the set Qn
2 .

V2n�1 V2n�2 : : : Vi : : : V2 V1 V0
# # # # # #
V� V� : : : V� : : : V� V� V�
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Figure 20: The basin of attraction �eld of a typical unbiased random map, n=12. The 212 = 4096 states in
state space are connected into 9 basins of attraction. The period (p) and size (s) of the biggest three (top row),

including their percentage of state-space, are as follows: (1) p=118 s=3204=78.2%. (2) p=20 s=599=14.6%.
(3) p=32 s=194=4.74%. The �eld's G-density=0.37, this is a low value implying chaotic dynamics.

The list of images is likely to contain repeats, and if so some other members of Qn
2 must be missing

from the list. Transitions to some arbitrary element Vx may thus be one-to-one or many-to-one, or

may not exist. The latter is a garden-of-Eden state in the terminology of discrete dynamical networks.

A representation of the particular mapping may be drawn as a basin of attraction �eld or fragment

thereof just as for CA or RBN, and will have the same general topology of trees rooted on attractor

cycles, as shown in �gure 20.

Random maps provide the most general context for a discrete dynamical system and are equivalent

to a fully connected RBN where k = n, (the neighbourhood = the network size). This follows because

each cell in the RBN can be assigned an arbitrary output for any network state.

9.1 The Random Map Reverse Algorithm

The \brute force" reverse algorithm for �nding the pre-images of states in random maps can also be

applied to discrete dynamical networks, RBN and CA. The method depends on �rst constructing an

exhaustive mapping Qn
2 ! Qn

2 . For discrete dynamical networks, the mapping is de�ned by iterating

the network forward by one step from every state in state-space and �lling in the image list accordingly.

A list of 2n pairs, each state and its image (successor), is held in a data structure. The pre-images of

an arbitrary state S are found by scanning the image list; any occurrence of S in the list gives a pre-

image, the state paired with S. If S does not occur in the list it has no pre-images, a garden-of-Eden

state.

10 Biological networks

Genetic regulatory networks have been thought of as discrete dynamical networks, to explain how

gene expression is able to settle into a number of distinct stable patterns or cell types, despite the

fact that all eukaryotic cells in an organism carry an identical set of genes[5, 7, 11, 23]. The gene

expression pattern of a cell needs to be stable but also adaptable. Section 4 described biases to RBN

to achieve such a balance, and related measures.

Cell types have been interpreted as the separate attractors or basins of attraction into which

network dynamics settles from various initial states. Trajectories leading to attractors are seen as



20 Discrete Dynamical Networks and their Attractor Basins

the pathways of di�erentiation. The attractor basins in RBN are idealized models for the stability of

cell types against mutations, and also perturbations of the current state of gene activation. Figure

21 illustrates both e�ects. If a particular reference state (pattern of gene activation) undergoes a 1

bit perturbation, the dynamics may return to the same subtree, the same basin, or it may be ipped

to another basin, a di�erent cell type. In this case the basin of attraction �eld remains unchanged.

Alternatively, the network itself my undergo a mutation (in the genotype), resulting in an an altered

basin of attraction �eld (the phenotype).

The examples in �gure 21 are small so that the pattern at each node can be shown. Larger networks

are a�ected in analogous ways. The consequences of a one bit mutation has a relatively smaller e�ect

with increasing network size. However, a particular one bit mutation may cause drastic consequences

whatever the size, such as breaking an attractor cycle. The consequences of moving a connection wire

is usually greater than a one bit mutation in a rule.

10.1 Memory

Attractors classify state-space into broad categories, the network's \content addressable" memory

in the sense of Hop�eld[6]. Furthermore, state-space is categorized along transients, by the root of

each subtree forming a hierarchy of sub-categories. This notion of memory far from the equilibrium

condition of attractors greatly extends the classical concept of memory by attractors alone[17, 20].

It can be argued that in biological networks such as neural networks in the brain or networks of

genes regulating the di�erentiation and adaptive behavior of cells, attractor basins and subtrees, the

network's memory, must be just right for e�ective categorization. The dynamics need to be su�ciently

versatile for adaptive behavior but short of chaotic to ensure reliable behavior, and this in turn implies

a balance between order and chaos in the network.

A current research topic, known as the \inverse problem", is to �nd ways to deduce network

architecture from usually incomplete data on transitions, such as a trajectory. This is signi�cant in

genetics, to infer the genetic regulatory network (modeled as RBN) from data on successive patterns

of gene expression in the developing embryo[12]. In pattern recognition and similar applications in the

area of arti�cial neural networks, solutions to the inverse problem would provide \learning" methods

for RBN to make useful categories[17, 20].

11 Conclusion

Important insights may be gained by considering network dynamics in the context of attractor basins.

Some methods of achieving this have been presented, including parameters and measures on particular

trajectories that may be related to those on global dynamics. It is hoped that these methods may

provide a basis for future research, both in theory and applications, in the many areas of complex

systems where network dynamics plays a central role.

Acknowledgments: Thanks to Cosma Shalizi for suggestions, and to the many people who have

contributed to this work over the years, notably Chris Langton and Stuart Kau�man.
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Abstract

We present a model of the cellular organization in the primary visual cortex which is based
upon the idea that there are two visuotopic mappings, one global and the other local. The

local visuotopic maps self-organize from a set of initially random inputs. The various response
properties measured in V1, and the regular geometrical relationships between them, are explained
in terms of the interaction of these two mappings. We describe computer modelling of orientation

preference in V1 which relies on two assumptions: 1) the receptive �elds develop due to a simple
excitatory-centre / inhibitory-surround mechanism, and 2) any point in the global visuotopic
map can reach any point in the non-granular layers via poly-synaptic routes. Hebbian learning is

applied to these indirect inputs while the network is stimulated with a moving bar. The computer
modelling shows that all the key geometrical features of orientation preference; singularities,
linear zones and saddle-points, emerge consequent to the learning. This suggests that orientation

preference is a byproduct of the double visuotopic mapping. More generally, the two mappings
are hypothesized to allow those features of the visual �eld which tend to be spatially contiguous
in the visual �eld (orientation, texture, colour, contrast) to be learned as response properties by

neurons within V1.

1 Introduction

This paper presents a model of the organisation of the mammalian primary visual cortex. The core

proposition is the existence of two, distinct (but topologically identical) mappings of the visual �eld

into the primary visual cortex. The �rst mapping is the classical retinotopic, global projection of the

visual �eld to V1, and the second is a local mapping of visual �eld inputs, multiple copies of which

tile the non-granular layers of V1. This second mapping emerges due to Hebbian learning applied

to di�use, convergent projections. The only a priori requirement for self-organization of these input

connections is the presence of a local connectivity in the non-granular layers which drives a simple

excitatory-centre / inhibitory-surround mechanism.

Together these two mappings de�ne the local-global symmetry (LGS) model of V1. The inter-

action between the two mappings supplies non-retinotopic response properties such as orientation

preference. The LGS model of the primary visual cortex suggests there is a rather direct relationship

between globally represented objects (e.g. an oriented line) and various other response properties (e.g.

orientation preference) which have a local geometry.
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The function of the LGS mapping is to allow each point in the retinotopic image access to a

representation of the entire visual hemi-�eld. Each retinotopic point is then able to make associations

with points in the visual image whose activity tends to coincide with that retinotopic point. Any

oriented lines which pass through a particular retinotopic points can become associated with that

retinotopic point. The process of self-organization in the model follows principles related to Phillips

and Singer's[15] concept of coherent infomax, and may be regarded as a concrete demonstration of

this concept in action in anatomical organization. Points in the visual image can discover those visual

contexts which are predictively related to their own activity.

The key �nding reported in this paper is that the local mappings of the visuotopic �eld sponta-

neously emerge under a robust range of conditions. The critical mechanism is a standard excitatory-

centre / inhibitory-surround interaction between neurons, the so-called Mexican hat �eld. The only

additional assumption is that any point in the global visuotopic map can inuence the activity at any

other point. Since these interactions are initially weak and can occur via poly-synaptic routes, this

assumption is also reasonable.

Local mappings of the visuotopic �eld emerge robustly under a range of parameter variations.

Assumptions of the model are:

1. cortical elements within a local neighbourhood interact via a standard excitatory-centre /

inhibitory-surround (the so-called Mexican hat �eld) and this organization is a priori to the

model

2. The retina projects to the cortex in the standard visuotopic manner, but additional to this

direct topographic mapping, any retinal point may contribute some input to any point in the

non-granular layers. These di�use projections are initially weak and are considered to arise from

converging and diverging polysynaptic pathways within V1.

3. Hebbian learning applies to synapses supplying cortical input to the non-granular layers via the

indirect, di�use pathway.

2 Response Property Geometry and Connectivity of V1

The response properties of V1 are well catalogued. These properties have been mapped through

single-cell studies [11], metabolic transport studies [23, 21, 22] and optical imaging of the cortical

surface [4, 8]. These studies have shown that V1 exhibits a distinctive tiling of various response

properties [4]. Swindale[20] has described a set of canonical properties which a model of the geometry

of the primary visual cortex should take into account. These properties include the spatial frequencies

and organisation of: ocular dominance bands, cytochrome oxidase (CO) blobs, singularities and iso-

orientation regions.

Layer 4C of the macaque primary visual cortex has a strict retinotopic organisation [5]. In the

macaque, each hemi-retina becomes represented, through a complex logarithmic transformation, as

an almond shaped map in layer 4C of V1 [23]. This transformation is of fundamental importance to

the functionality of the visual recognition system, allowing computational simpli�cation for operations

such as rotation and scaling in two dimensions [17, 18].

Neurons in the non-granular layers of the primary visual cortex are organised into repeated units,

roughly 800�m wide and 600�m high, called hypercolumns [11]. Each hypercolumn spans an entire

range of orientation tunings and a left and right ocular dominance set. Located along the centres of

ocular dominance bands are cytochrome-oxidase (CO) blobs. The blobs take up higher levels of CO

staining because of their higher metabolic activity [10], and are responsive to colour and low contrast.

Interblob regions are more selective for high contrast [21, 22].

The geometry of orientation preference reveals three predominant features: singularities, linear

zones and saddle regions [4]. Orientation preference changes continuously around points, or singulari-

ties. These roughly circular \pinwheels" traverse 180� of all possible orientation preference. Between

adjacent singularities, running parallel to the ocular dominance bands, are regions in which orientation
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Figure 1: Map of orientation preference in the Tree Shrew. Ori-

entation preference varies from 0 (white) to � (black). (Data

provided by Bill Bosking).

Global Mapping Local Mapping

oriented lines orientation preference

fovea ! periphery CO blob ! interblob

decreasing ganglion cell density decreasing metabolic activity

decreasing density of colour cones decreasing colour selectivity

decreasing contrast sensitivity low ! high contrast preference

Table 1: Analogies between the properties of the hemi-retinal

image and the local organisation of receptive �eld properties

in the non-granular layers. CO blobs are assumed to be the

central visual �elds representation in the local maps of the

non-granular layers.

preference changes slowly and continuously. These regions are called linear zones. Other regions be-

tween singularities a show local minima in orientation preference in one direction and a local maxima

in a perpendicular direction: so-called saddle points. Singularities surrounding saddle-points form

mirror images of each other, through orthogonal reection lines. The double reections have the e�ect

of allowing orientation selectivity to change continuously between adjacent pinwheels. An orientation

preference map, in this case taken from the tree shrew, is shown in Figure 1.

Alexander et al [2] have noted strong analogies between the global properties of the hemi-retinal

image and the response properties in the non-granular layers. These are given in Table 1. In particular,

we assume these analogies with the hemi-retinal image apply to a geometrical unit in the non-granular

layers corresponding to 1=4 of a hypercolumn. Such a unit includes one CO blob (or portion of an

elongated CO blob) and one singularity and has the approximate dimensions in the macaque of

400�m� 300�m. Figure 2 shows a region of macaque visual cortex in which these geometrical units

have been abstracted from imaging and staining data [1].

Anatomically, the mapping into layer 4C occurs via the Lateral Geniculate Nucleus (LGN) in the

thalamus [6]. The non-granular layers receive direct input from 4C, as well as indirect inputs via

various of the other non-granular layers [13, 14]. In addition, a large percentage of their inputs arrive

via lamina 4A and 4B [7]. Of particular interest for the model presented in this paper are the lateral

projections of lamina 4B spiny stellates within 4B itself. These e�erent axons project laterally up to

4.5 mm in the macaque [7]. A similar pattern of projecting �bres is found in the squirrel monkey

[16]. The lateral connections show periodic accumulations of denser terminal �bres every 375�400�m
[7, 16]. These patches of connections form a radial pattern with a similar spatial periodicity to the

CO blobs [16]. The �bres within 4B extend further than any other class of intrinsic �bres within the

primary visual cortex. Only cells within layer 4B send out this class of long range lateral �bres and,

at mid- to long-range distances from the cell body, all terminating boutons are within 4B itself. Most

of the �bres within 4B are preferentially horizontal, rather than vertical [16].

The lateral connections within laminae 4A and 4B are proposed as the primary routes for the all

to all mapping required for the development of local visuotopic maps. They guarantee that any point

of the retinotopic image in 4C can project to any point in the non-granular layers within about 6

synaptic junctions. Convergence and divergence of the signal transmission at all way-stations of the
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Figure 2: Abstracted map of the

tiling of response properties across

the surface of V1. Circles are lo-

cal map representations of the foveal

region (CO blobs or portions of

elongated blobs), stars are singu-

larities. Tile borders are de�ned

largely by ocular dominance bands

and reversals in the orientation pref-

erence gradient. (Original animal

data from [3].)

visual pathway o�ers further potential di�usion of the retinal image to the non-granular layers.

In the LGS model, the global input-mapping supplies the retinotopic response properties of the

non-granular layers. Other response properties of the local map representations are formed through

an interaction of the local input-maps with the global retinotopic input-mapping into the non-granular

layers. Here we distinguish between the local input-map, and the local representational maps (or local

response property maps) the latter arising largely as a result of interactions between the two types of

input-maps when driven by visual stimuli.

3 Modelling of the Local-Global Symmetry Mapping

The present modelling of V1 introduces a few simpli�cations into the visual system, and will not

explicitly deal with ocular dominance, the cortical magni�cation factor, contrast and colour selectivity.

The resulting simpli�ed model focuses on the development of orientation selectivity, and aims to

explain data from mammals such as the macaque, the tree shrew and the ferret. A more complete

model is in development.

A moving bar was repeatedly swept across a simpli�ed model retina. Activity in this retina then

drove activity in the model non-granular layers, via the direct and indirect pathways. The e�ects local

neighbourhood interactions, via a simpli�ed excitatory-centre and inhibitory-surround mechanism,

were then added. The present model is a static, time-averaged portrayal of what is never-the-less a

dynamical wave-medium [24]. While more realistic dynamics will add to the explanatory scope of the

LGS model, the present description captures the essential of the structural mechanisms involved in

the formation of the local-input maps.

The activity of each non-granular unit (approximately a minicolumn, 30�m in diameter) was cal-

culated in three steps. The symbols a; �;A and A denote the activations at successive stages and

include the e�ect of direct (retinotopic) input connections, local input-map connections, local excita-

tory inuence and inhibitory surround, respectively and cumulatively. A single line was presented to

the simulated retina, and the line swept across, each sweep taking place at randomly chosen angles.

The activation, a, on the retina was fed directly to the model cortical minicolumns. No learning

occurred in relation to these retinotopic projections, as they can be assumed to be largely innately

provided. The local input-map connections, wjk , were initially set to low values (0 � wjk � 0:01

drawn from a uniform random distribution. Equation (1) describes the e�ects of the direct and local

map connections on the activation of each minicolumn.
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Figure 3: Grey-scale map of orientation preference.

The map is produced in a manner analogous to the

orientation preference maps in animals. Orienta-

tion preference varies from 0 (white) to � (black).

�k = ak +

vX
j=1

wjkaj + �; aj 2 f0; 1g; 0 �
vX

j=1

wjk � 0:5; wjk � 0 (1)

where v is number of discrete retinotopic locations in the visual �eld. An amount of noise, �, was added

at this stage. The modelling results proved robust to a wide range of noise values (0 � � � 0:1). The

excitatory-centre was implemented by simply averaging the activities of each cell with its immediate

neighbours:

Ak =
�k +

Pe
j=1 �j

e+ 1
(2)

where e is the number of �j 's within the excitatory radius. It the present modelling the excitatory

radius was set to one minicolumn. The inhibitory-surround was implemented in the following fashion:

each cell's activity, if lower than one of its neighbouring cells, was multiplied by the ratio of its own

activity over the other cell's activity:

Ak =
AikQi
j=1Ak

; (3)

where i is the number of Aj 's within the inhibitory radius that satisfy the condition Aj > Ak. The

inhibitory radius was set to a distance of 7 minicolumns.

The learning rule was a simple variant of Hebbian learning. The local input-map connections were

strengthened if the equivalent point in the retinotopic (input) layer was active and in proportion to

the activation of the cell in the non-granular (output) layer.

�wjk = d(Ak �Amin)aj (4)

where Amin was the minimum activation of the cells inuenced by the direct retinotopic input and d

was a constant a�ecting the learning rate. d could be varied over a broad range of values (0:000003 �
d � 0:01) without any substantive e�ect on the simulation results.

3.1 Results

An example of the model cortex, activated by a bar, is shown in Figure 3. Results of the modelling,

in the form of a grey-scale orientation preference map, are also shown. The simulation was run for

100,000 time-steps or 2,000 sweeps of the stimulus bar. The orientation preference map is produced

in a manner analogous to animal studies. It shows singularities, saddle-points and linear zones.

Each local map is driven by retinotopic activity appropriate to its particular retinotopic location.

The local input-map connections become organized according to the patterns of activity in the entire

visual �eld which reliably coincide with activity at that retinotopic location. In the case of line

orientation preference, each local map `sees' only the subset of lines relevant to that local map, that

is all lines which actually pass through that point. The double mapping has the e�ect of adding an

orientation label to each `pixel' in the global image of the line.
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The model suggests very speci�cally the function of V1. It takes as inputs a set of active retinotopic

locations. By creating a map within a map, points of high activity serve as feature labels. Information

is supplied to later processing stages that, not only is this retinotopic point active, but it is active

because of a particular line of orientation, �. Each retinotopic location learns which other points in

the visual �eld are relevant to its own activation.

4 Conclusions

This model described in this paper relies on four assumptions to explain orientation selectivity in the

primary visual cortex. These are: a global, topology-preserving mapping from the retina to the non-

granular layers via the laminae 4C (uncontroversial); an initial, di�use, disorganized all to all mapping

of the retinotopic inputs to the non-granular layers; that receptive �eld properties are organized

through a centre-excitation / surround-inhibition mechanism, and; that the response properties, in

particular orientation preference, result from the interaction of local and global mappings.

Orientation, texture, colour and contrast tend to be spatially contiguous elements of the visual

�eld. The LGS mapping of visual inputs in V1 allows precisely these properties of the visual �eld

to be learned as response properties, and their contiguity in visual space means the local maps will

tend to be visuotopic. The local mapping to the non-granular layers makes the contents of the entire

visual �eld available for association with each retinotopic location in the non-granular layer. It is a

structural embodiment of Phillips and Singer's [15] coherent info-max.

The local mapping described in this paper has correspondences to the ice-cube model of Hubel

and Wiesel [12]. Both assume the uppers layers are tiled with a regular map of the feature space. The

LGS model has the additional features that it 1) directly suggests the function of known anatomical

connections, and 2) explains how the response properties are created.

The model assumes that the geometry of V1 serves to organise multiple response properties into

two dimensions. It di�ers from other models of V1 geometry which, rather than mappings, use

simulated annealing or other relaxation procedures to achieve this dimension reduction [9, 19]. The

latter models have multiple free parameters [20]. By contrast, the LGS model of V1 contains a limited

number of assumptions and the self organization is robust to over a fairly large range of learning and

noise parameters.
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Abstract

The application of information technology to environmental issues is changing both theory
and practice. The idea of \natural computation" provides new ways to understand environmental
complexity across the entire range of scales, from individual phenotype to biogeography. Under-
standing the ways in which local interactions a�ect the global composition and dynamics of whole

communities is crucial to the viability of strategies to manage ecosystems, especially in land-
scapes altered by human activity. Also environmental planning and management are increasingly
dependent on accurate, up-to-date information that sets local decisions within a global context.

The Internet makes it possible to combine environmental data from many di�erent sources, rais-
ing the prospect of creating a global information warehouse that is distributed amongst many
contributing sites.

1 Introduction

Humankind is in the midst of a crisis. For thousands of years people have exploited the environment

as though it were an in�nite resource | unchanging, predictable and inexhaustible. However the

impacts of human activity are now felt everywhere. Conserving the world's ora and fauna is one of

the great challenges of our time. Loss of biodiversity, ecosystem degradation and pollution are just

some of the environmental problems on planet Earth. With human population and industrialisation

still increasing rapidly, it is becoming vital to place a check on these problems within the next few

decades.

In the face of this rapidly changing situation, traditional ideas and approaches to environmental

management are no longer enough. To manage (say) a national park adequately requires knowing

much more than simply what is happening within the park. It demands that local issues be set in the

context of the surrounding region, as well as national and international developments, global change,

socioeconomic inuences, and a host of other issues as well.

As planners and managers learn to cope with this new scenario, we are witnessing the development

of a new paradigm that integrates traditional �eld ecology with modern technology. It is a paradigm

that links scienti�c research to environmental planning and management. It links diverse and poten-

tially massive sources of information, from �eld ecology to satellite imagery. Such a new approach

can be invoked to address a host of practical problems, from land use planning to global warming.

In this brief account we try to achieve three goals. The �rst is to explain briey the nature of

complexity in the environment. Secondly, we argue that a new paradigm | environmental informatics

| is emerging out of responses to the growing need to cope with this complexity. Finally we sketch

out some of the \grand challenges", both in research and in practice, that environmental informatics

needs to address in the new millennium.

2 Complexity in the living world

2.1 Sources of environmental complexity

Even the simplest ecosystems are highly complex. Complexity in the environment is present for many

reasons, but most many sources of complexity can be grouped into the categories described below.
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� The spatial scale
Many inuences of the world's environment come from sources outside the Earth's biosphere.

The sun, the moon, meteors and geomagnetism all inuence life on Earth. But even if considering

only our biosphere, the sheer scale involved in global environmental management is immense.

The planet's surface area totals over 509,000,000 square kilometres. Simply monitoring one factor

(say, surface temperature) across such vast tracts is a huge task [27]. Thorough monitoring of all

environmental factors or even rudimentary research of the entire surface of the Earth is currently

impossible. Whilst modern technology can help (e.g. remote sensing), it generates huge volumes

of data that must somehow be stored, collated and interpreted [19].

� The temporal scale

Many environmental processes occur over geological or evolutionary time. Even successional or

micro-evolutional processes usually take place over time periods much longer than a human life

(or the length of a typical ecological research project of 1-3 years!). This has led to many in-

accurate, \time-blinkered" assumptions in ecology, such as stable community structures, climax

states and other conclusions about balance and equilibria (see later).

� The number of organisms

Taxonomists have described about 1.5 million species [31]. The total number of species is not

known, but is estimated to be somewhere between 10 million and 100 million. At the current

pace it would take at least another 300 years of taxonomic research simply to document them

all.

However it is not sheer numbers of species that make the living world complex, but rather the

enormous variety of ways in which they combine and interact. For instance, suppose that 100

species inhabit a region; then there are 4,950 possible pairs of interacting species. However,

when we look at possible combinations, the possibilities blow out to astronomical proportions.

There are over 6:33 � 1019 ways in which we can select communities of 10 species at a time.

For communities of 50 species at a time, this number rises to over 1093 combinations. This

complexity increases further by orders of magnitude when the interactions of biotic and abiotic

factors within an ecosystem are considered.

� Criticality
An important example of complexity, especially in landscapes, is the phase change between

connected and fragmented population distributions [7]. For instance, if we remove small patches

forest from a landscape then the forest as a whole retains its integrity. However if clearing

continues (at random), then instead of small patches breaking o�, the entire system remains

connected until a critical point, whereupon it breaks down into many isolated fragments [8].

Such criticality or abrupt phase changes have now been documented in many natural systems [2],

from pest and disease epidemics [10] to �re behaviour in forests [7].

� Non-linear interactions and feedback loops

One of the most important results to spring from ecological transect studies is that environ-

mental factors alone do not fully explain the spatial distributions of organisms. For instance,

competition between species often truncates distributions along an environmental gradient [25].

These results imply that ecosystems are not controlled in simple linear, fashion by external (i.e.

abiotic) factors, but by interaction of biotic and abiotic factors within a system (eg. [2]).

Networks of interactions between species are a major source of complexity in ecosystems. In-

teractions between pairs of species can take many forms, such as predation and competition.

Feedback loops are especially common in multi-species systems. In populations with seasonal

reproduction, delays arising from feedback tend to produce cyclic behaviour. They can also lead

to non-linear and chaotic dynamics [23].
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Complexity in an ecosystem (as measured by species richness) does not necessarily imply stabil-

ity [21, 22, 23]. One reason for this is that any random collection of interacting species is likely

to contain at least one positive feedback loop, which destabilises the system and leads to local

extinction of one or more species [28].

� Human inuence on natural systems

Human inuences on ecosystems tend to be disturbances that disrupt any semblance of equi-

librium. Two of the most far-reaching of these disturbances have been land clearing and the

introduction of exotic species. In many cases the e�ects are unintended side e�ects. Examples

include wild�res, spread of diseases, pollution, salinisation, and deserti�cation, to name just a

few. In every case the disturbances force ecosystems away from equilibrium and can lead to

local extinctions or other abrupt changes (e.g. [7, 8]).

In addition to making ecosystems more complicated (or more di�cult to manage), humans

inuence the management of ecosystems by directing goals and agendas in ways that require

environmental management decisions to be based on much more than ecological knowledge. This

has led to the recent, rapid increase in the use of decision support models by land managers [19].

2.2 Some lessons of complexity

Although still in its infancy, complexity theory holds some important lessons for environmental science

and management. Only some of these have been widely recognised so far. Taken together they

highlight the need for new ways of doing research and management in ecology. Here I briey summarise

some of these lessons.

� Local interactions can produce global e�ects

Although reductionism has served science well, we must recognise that it fails badly in trying

to make sense of environmental processes. Above we highlighted a few examples of the ways in

which interactions between di�erent populations can have unexpected e�ects. It has long been

common practice in ecology to study individual populations separately (\autecology"), without

reference to the ways they interact with other populations. Other reductionist practices include

breaking down community level dynamics into studies of physiology and other responses at the

level of individuals.

A good example is the way in which dispersal (interactions between sites in a landscape) can

a�ect the dynamics of whole ecosystems [8]. Rare species tend to form clumped distributions

which help them to persist in the face of superior competitors. Simulation studies suggest that

this process provides one mechanism which maintains high diversity in tropical rainforests. Field

studies con�rm that rainforest contain just a few common, widespread species, and many rare

species [14]. All of these rare species have clumped distributions. By not fully understanding such

dynamics, conservation, management and research can be rendered ill-conceived or ine�ective.

� Systems can be inherently unpredictable

Sensitivity to initial conditions is a well-known phenomenon in non-linear systems, and one of

the hallmarks of chaos. It is especially common in ecology where so many interactions are non-

linear [23]. As an example, consider what happens if the connectivity of a landscape is near the

critical region mentioned earlier. Under such conditions the size and composition of connected

patches becomes extremely variable so the outcome of processes that involve spread through a

connected patch, such as �re, epidemics, and invasions, become inherently unpredictable [8, 10].

Likewise the addition of a single exotic species to an ecosystem alters the web of interactions

between species, perhaps creating a potentially devastating positive feedback loop where none

existed before [28].

The need to cope with unpredictability highlights the importance of tools such as simulation

models. Simulation allows us to carry out virtual experiments. In environmental management
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such experiments are often impossible to carry out in practice, either because they would take

too long (e.g. forest succession) or because they would be too damaging (e.g. burning down

an entire forest). Although exact prediction may be impossible simulation makes it possible to

examine ways of dealing with many potential scenarios.

� There is no balance of nature

The idea that nature is in equilibrium { a cornerstone of much thinking within the environmental

movement { arises from several sources. Perhaps the most important is the exceedingly long

time scale of many processes in forest ecosystems, as mentioned earlier. Individual trees often

live for many hundreds of years and simple succession { the replacement of one community by

another { can take literally thousands of years to complete [6]. The fact that forests change so

slowly gives the false impression that they are in equilibrium.

The equilibrium assumption underlies many ideas in theoretical ecology. For instance, Macarthur

and Wilson's theory of island biogeography suggested that for any island there is an equilibrium

number of species that it can sustain [20]. However growing understanding of the large scale and

long-term dynamics of ecosystems make equilibrium assumptions increasingly untenable. For

example Clements' theory assumed that succession leads to an equilibrium climax state [3]. This

theory dominated plant ecology for most of the twentieth century, until evidence accumulated for

other kinds of dynamics, such as chronically disturbed ecosystems [24] and long-term instabilities

in vegetation history [5, 6].

Perhaps more importantly the urgent need to address environmental management, especially in

disturbed ecosystems, is forcing ecologists to search for non-equilibrium models.

� The Serendipity E�ect

Combining di�erent datasets together often leads to unexpected discoveries. That is serendipity

occurs. The probability of serendipity increases exponentially with the number of di�erent

datasets available. So large repositories of data are almost certain to be rich sources of new

insights about environmental processes [9].

3 Natural computation

A new paradigm requires a new way of looking at the world. The increasing use of computers has

stimulated a view in which the natural world is seen as a form of computation. The analogies are

compelling. DNA is the code for life's \program". Organisms are akin to robots or agents, and animal

communication is a form of information processing.

The links between biology (including ecology) and computing have been growing ever closer. Tech-

niques such as genetic algorithms, cellular automata and neural networks clearly borrow on biological

ideas. We have argued [10] that many algorithms can be improved by mimicking living systems more

closely [18].

3.1 From genes to ecosystems

One of the major challenges for ecology is to bridge present gaps in our understanding in the spectrum

of genotype, phenotype, population and community. Perhaps the least well understood is the link

between genotype and phenotype, and thence to environmental processes. The obvious analogy for

scholars of computing and complexity is that to understand how a computer program works it is not

enough to understand what each line of code means. You also need to know how those lines of code

are organised.

At present very little is known about the relationship between genetic composition and growth

processes. Kau�mann [17] modelled genetic control over growth as a switching circuit in which genes
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are ON-OFF switches that not only code for certain proteins but also a�ect other genes. However

there has been very little other work of this kind.

L-system models [26] are now so sophisticated that they can faithfully reproduce the potential

growth form of many plants. Virtual plants are now being used to carry out virtual experiments and

could help to bridge the gap between laboratory experiments and �eld observations. A crucial step

is to understand the link between growth form and taxonomic relationships. That is, how do genetic

variations impact on the models?

3.2 Alife

One of the most relevant and important developments associated with natural computation is a

new research �eld called arti�cial life (`Alife' for short). This is the study of life-like properties in

computational systems.

One of the key ideas in Alife is that of an agent. An agent is a discrete entity that has certain

computational capabilities, and can also interact both with its surroundings and with other agents.

An important area of Alife research, and of advanced computing generally, is to study the properties

and behaviour of multi-agent systems. This research is beginning to grow into a signi�cant body of

theory about systems of this kind.

For instance, in one early study, Hogeweg and Hesper (1983) showed that the observed social

organisation of bumblebees arises as a natural consequence of the interaction between simple properties

of bumblebee behaviour and their environment. For example, one rule they invoke is the TODO

principle [12, 13]. Bumblebees have no intended plan of action, they simply do whatever there is to

do at any given time and place. Similar interactions lead to order in many other animal communities,

such as ant colonies and ock formation by birds.

4 Towards a new paradigm

For most of the Twentieth Century, conservation could be equated with national parks. However

the rapidly growing scale of environmental alteration and increasing public awareness of environmen-

tal issues have highlighted the need for o�-reserve conservation and environment management [4].

The range of o�-reserve issues is now very broad. Some examples include: environmental impact

assessment, state of the environment reporting, environmental monitoring, conservation of rare and

endangered species, natural heritage planning, species relocation programs, land use planning, and

environmental degradation.

Out of all the above activity has emerged an awareness that local decisions and priorities need to

be set in a wider, and ultimately global context [30]. For instance to decide whether to log a patch of

rainforest, you have to know how much other rainforest there is, what species will be put at risk, what

the global costs and bene�ts are, etc. Conversely, every local area contributes data and experience

that can be applied to other areas and can feed into setting global priorities and policies.

The new paradigm that is emerging treats environmental management as a host of activities all

of which reinforce each other. Each area of activity is both enhanced and constrained by the global

picture. The key to the success of the new approach is this two-way communication. Setting matters

in context means having access to relevant and reliable information. During the 1990s governments

have been very active in setting up regional, national, and international environmental information

systems (e.g. [1, 9, 30]).

The growth of the Internet has played an integral part in this emerging paradigm. Up until

recently most research was carried out as a series of isolated studies. However, by sharing data over

the Internet, the results of previous studies can enrich subsequent research. The best examples are

in genomic research, where the development of large, on-line databases means not only that new

sequences can be interpreted by comparing them with whole families of existing data, but also that

entirely new kinds of studies are possible in which researchers mine the databases for unsuspected
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patterns and relationships. The challenge for ecology is to mobilise data from previous studies in

similar fashion.

The essential advantage of the Internet (especially the World Wide Web) is its ability to combine

information from many di�erent sources in seamless fashion [9]. This has created an unprecedented

opportunity for data sharing and cooperation on scales that were formerly deemed impossible. It

also brings sharply into focus the need for coordination. The explosive growth of the Internet has

led to massive confusion. Many organisations are duplicating facilities in inconsistent ways. There

is an urgent need to develop for agreed protocols and standards regarding, data recording, quality

assurance, custodianship, copyright, legal liability and indexing [9].

One of the most urgent needs is to develop a consistent framework for discussing environmental

issues. One of the most basic problems is that we do not even have a comprehensive list of the

world's species. Not only that, the taxonomic nomenclature has been confused and inconsistent. It

is not surprising then that some of the �rst initiatives in on-line environmental information have

focussed on putting together consistent reference lists of the world's species. For instance since 1993

the International Organization for Plant Information (IOPI) has been developing a checklist of the

world's plant species [15]. This is now contributing to recent major initiatives in this area, including

the Species 2000 Project [16] and the Global Biodiversity Information Facility (GBIF), which are

international projects of the OECD's Megascience Forum [11]. The aim is to establish \... a common

access system, Internet-based, for accessing the world's known species through some 180 global species

databases ..."

A major challenge is to esh out and complement the data that is now available with facilities that

allow people to use it e�ectively. Along with data warehouses, we also need information systems to

interpret and apply the information. For instance, foresters, faced with the need to demonstrate the

environmental impact of logging operations, have developed simulation tools such as the visualisation

program SmartForest. This program [29] integrates simulation models with geographic information

to create views of future landscapes under selected scenarios.

5 Conclusion

Learning to conserve the world's living resources is one of the great challenges of our time. In a very

real sense the future of humanity depends on �nding a solution. It is not an easy problem to solve.

As we have seen here, achieving these goals will demand a much better understanding of environ-

mental complexity than we have at present. Thus there is a need for greater dialogue between ecology

and complexity studies. At present the extent of this dialogue is still small. With a few notable

exceptions, most ecologists are largely unaware that the �eld of complexity even exists, and many

researchers in (say) Alife are computer scientists who are unaware of the major issues and questions

driving ecological research.

We can no longer pretend to manage nature in isolation from human activity. Human activity has

expanded to a�ect virtually every ecosystem, everywhere. We have to learn to manage ecosystems

that are not only out of equilibrium but also chronically disturbed and largely unpredictable. We can

no longer con�ne conservation to \isolated", \natural" parks. Conservation needs to incorporated

into the ways we deal with all living systems in all environments.

Global conservation demands a much greater level of coordination than at present. This coordi-

nation includes two-way communication between the activities of di�erent conservation agencies and

groups. It also implies much greater planning because almost every socioeconomic activity potentially

impinges on conservation. To achieve both of these ends, greater dialogue between ecologists and

computer scientists is needed urgently.
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Abstract

There is ample evidence to show that nonlinear dynamical or chaotical properties underlie
aspects of physiology, neurology, and even behavior. This paper presents a psychophysical \cas-
cading" experiment in which the response is passed on to the next trial as the new stimulus.

The time series of response is modeled by a nonlinear psychophysical model based on an existing
recursive cubic polynomial function called the \� recursion" originated by Robert Gregson. The
responses in the cascading experiment are found to be classi�ed into three categories, and some

show the trace of chaos. However, the attempt to model the time series with the new model or
the original � recursion resulted only in coarse approximations to the data. In spite of its inade-
quacy at simulating the time series itself, the new model managed to simulate the autocorrelation
functions of the original data. These results suggest that the model we propose is in some sense

within the same family of dynamical systems as the psychophysical dynamical system generating
the observed data although it is necessary to develop more subtle nonlinear dynamical models.

1 Introduction

Both the biological mechanisms of life, and their behavioral manifestations, have been found in many

of their aspects to show the properties of nonlinear dynamics, or deterministic chaos [12, 13, 20, 32,

37, 39]. Examples are found in analysis of biological systems with electroencephalogram [10, 23] and

electrocardiogram [27], or also at neurological level [1, 2, 3, 4, 11, 31]. Psychophysics also provides

examples of nonlinearity. The fundamental principle of psychophysics is to investigate the subjective

intensity of a given stimulus, and to provide a mathematical description of the relationship between

subjective intensity and stimulus magnitude in terms of a psychophysical law. For example, Stevens

[40] proposed a \power law" which is de�ned as

	 = k��

where k and � are constants, � denotes the stimulus magnitude, and 	 denotes the subjective mag-

nitude. That is, by assuming that changes in responses within the organism are directly proportional

to changes in the level of external stimulation, the power law can plausibly produce the relationship

of any stimulus magnitude and subjective intensity response. The power law is often referred to

as a \linear" psychophysical law since the stimulus-response relationship can be represented with a

straight line on log-log coordinates. The power law has been widely accepted as a good approximation

of such relationships; however, it also has met with some skepticism. For example, Ross and Di Lollo

[38] reported the constant failure of the power law in an experiment in which observers were asked

to judge the magnitude of lifted weights. The failure of the power function lead some researchers

to propose other expressions [29] while others (see chapter 6 of Uttal [43]) have proposed various

\nonlinear" psychophysical functions. Indeed it is plausible to assume an essential nonlinearity in the

stimulus-response relation if one assumes a nonlinearity in the biological substrate of perception.

Among the nonlinear psychophysical models that have been proposed, perhaps the leading example

is the \� recursion" function [14]. While other nonlinear functions have been applied to particular

phenomena (e.g., Watson [46]), Gregson has shown that his � recursion, which is a complex valued

cubic iterative function, can plausibly simulate a wide variety of psychophysical e�ects. Having
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previously shown that the � recursion and its extended models are valid nonlinear psychophysical

models at a practical simulation level [21], this research examines the ability of the one-dimensional

model to simulate behavioral phenomena. In particular, we are interested in how a special property

of the �, \cascading", might be used to model dynamic aspects of line length perception, which,

as reviewed below, is known to produce illusory e�ects under a number of conditions. The main

characteristic of cascading is to transform the intensity of a response from one step of the simulation

before applying it as a stimulus value at the next stage. This cascading process is vital for the model's

account of nonlinear psychophysical phenomena [14]. We suggest that the cascading process has a

natural behavioral interpretation if we allow observers to produce their own stimuli. In particular, we

asked observers to estimate the length of a briey presented stimulus line over the course of a number

of trials. In each trial but the �rst, in which a standard line was presented, the line presented to an

observer was of the same length as they had indicated their subjective estimate of the line length to

be on the preceding trial. If we assume nonlinear properties in human perception, then we should

observe dynamics in this experiment like those predicted by a nonlinear cascaded model.

In this paper, we �rst describe the model to simulate the time series obtained by the experiment.

The model is based on the cascaded � recursion [14], but since it is di�erent in some respects, we refer

to it as a cascaded cubic polynomial recursion (CCPR) model. We then briey review the literature

on perceived line length, and present the experiment. Apart from modeling with a nonlinear cascaded

model, we also present a descriptive response time series analysis to see if the perceptual cascading

process possesses nonlinear (in particular, chaotic) dynamics.

2 The Model

The � recursion is a well-established psychophysical function that Gregson has shown not only in a one-

dimensional stimulus-response level [14], but also in a multi-dimensional vector form, n� [15, 16, 17],

and a lattice form, (n�n)� [18, 19]. A theoretical advantage of an iterative perceptual model such as

Gregson's is that it can reect the iterative behavior of biological neural networks. As we mentioned

above, we adopt a cascaded cubic polynomial recursion (CCPR) model which is based on Gregson's

one-dimensional � recursion. We therefore briey review some properties of the �.

The � recursion is de�ned as

Yj+1 = �a(Yj � 1)(Yj + ie)(Yj � ie) i2 = �1;

or equivalently

Yj+1 = �a(Yj � 1)(Y 2
j + e2) (1)

where a is real, ie is imaginary, and Y is complex. In order to apply this function as a psychophysical

function, the input (stimulus) series U is scaled so that the parameter value a lies between 2 and 4.

The imaginary component represents the internal activity level within the system. The parameter

value e represents, roughly speaking, the sensitivity of the system to rates of change of inputs in

time (not the well-known constant e = 2:7182 : : :). It is constrained to the range between 0 and 0.5

(0 < e < 0:5) or ae < 1:7 in the region of 0:5 < e < 0:7, to avoid an explosive condition. The

initial value for this model, Y0, is �xed at the onset, namely, Y0 = (�; �); � � 0:5; � < 10�8 (i.e. the

initial condition � 0:5 + 10�9 i). After an arbitrary number of iterations (denoted as �), the real

component of Y (denoted as Re(Y ) which must be in the region of 0 < Re(Y ) < 1 in order to prevent

the explosion) represents the observable output or response magnitude. In short, the simulation is

composed of;

U ) a) �) Re(Y )� :

The di�erence between � recursion and the cubic polynomial of the CCPR model is in their initial

values. The initial value of the � recursion is Y0 = (�; �) which gives the complex aspect to the model,

but it is modi�ed just to Y0 = (�), i.e. Y0 = 0:5) for the CCPR model. One can view the iterative
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cubic polynomial adopted by the CCPR model as the special case of � recursion collapsed onto the

real line.

In the \cascading" process, the output is transformed to the next stimulus, that is

ak ) (1)) Y� ) Cascade) ak+1 ) (1)) : : : :

Each point estimated with (1) corresponds to that of the response time series obtained by an actual

experiment. More descriptively, a cascading model consists of two phases;

� estimate each element of the response time series (estimation phase), and

� transform the stimulus intensity and pass it back onto the estimation phase as the new stimulus

intensity (cascading phase).

Mathematically, the CCPR model can be described as follows. The estimation phase is the same

as (1), that is,

(Y�)k = �ak((Y��1)k � 1)((Y��1)
2
k + e2):

The cascading phase is composed of two parts. First, the next input is computed as

ak = c(Y�)k�1 + d;

where c and d are linear scaling constants, and � is the number of iterations. The second stage of the

cascading phase concerns the initial value for the next estimation phase. For the �rst estimation phase,

(Y0)1 = 0:5: The estimated value subsequently becomes the initial value of the following simulation,

i.e., (Y0)k = (Y�)k�1 although (Y0)k = � + Im(Y�))k�1 i in the original cascaded � recursion. If we

make the time series obtained from an actual empirical (scaled) data set,

P = fp1; p2; p3; : : : ; png;

then the CCPR model estimates each point and produces the corresponding time series,

p̂k = (Y�)k;

P̂ = fp̂1; p̂2; p̂3; : : : ; p̂ng:
The parameter values a1, e, c, and d are free, and can be set at the beginning to minimize the sum of

the squared deviation,

min(
X

(P� P̂)2):

3 Background of Perceived Line Length

As was mentioned above, line length is often perceived distortedly, as in geometric illusions such as the

M�uller-Lyer illusion, the Ponzo illusion, the horizontal-vertical illusion, and the parallel-line illusion

[5, 22, 24, 25, 33, 34, 35, 45], four of which are shown in Figure 1. Depending on context, then, the

human visual process distorts the equal length of the horizontal parallel or the horizontal-vertical lines,

so that they appear to be of unequal length. However the current research concerns distortion that

happens in the course of successive comparisons of line length, rather than the perceptual distortion

in any simultaneous comparison.

Woodworth [48] referred the error caused by successive comparison as \time error", and noted that

such error was usually negative|a negative time error happens when an observer underestimates the

stimulus magnitude of an object (such as weight, frequency, etc). Woodworth's review on successive

comparison and time error referred to weight lifting, auditory, and some esthetic experiments, but not

to line length estimation. We were unable to trace the �rst systematic experiment investigating this

particular subject, but as early as 1957, Yokose, et al. [49] showed that the perceived vertical length
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(c)
(d)

(a) (b)

Figure 1: Examples of line length illusions.

(a) M�uller-Lyer illusion, (b) Ponzo illusion, (c)

horizontal-vertical illusion, and (d) the parallel-

lines illusion. The horizontal lines of (a) and (b),

but the top lines appear longer in both cases. In

(c), the vertical line seems longer than the hor-

izontal line, but they are also the same length.

The lines in (d) are di�erent length. However,

the presence of the other line has a normalizing

e�ect. The top line appears shorter and the bot-

tom line appears longer than it is.

of a line, in successive comparisons, depended on the exposure time of the test line. According to their

results, the line was perceived to be shorter when the test line was presented for shorter durations

(the minimum exposure duration for their experiment was 50 ms). Moreover the subjective length of

the test line was shorter than its objective length. Erlebacher and Sekuler [9] conducted an analogous

experiment, and their results replicated Yokose et al.'s �nding; subjective length within the stimulus

exposure duration was shorter than the objective length.

Tsal and Shalev [42] and Prinzmetal and Wilson [36] studied the e�ect of attention on subjective

line length; they also mentioned the phenomenon just described above. That is, in a successive line

length comparison experiment, the comparison lines were perceived to be shorter than the physical

length of the standard line on average. Prinzmetal and Wilson [36] hypothesized that the cause of the

underestimation could include a framing e�ect from the display monitor [28, 30]. Alternatively, the

bias may have been due to one of their methods to control subjects' attention in their experiment.

Although in a modi�ed version of their experiment, Prinzmetal and Wilson were able to eliminate

underestimation, they nonetheless noted that observers do show an overall tendency towards negative

time error.

Previous research has also suggested the tendency to underestimate line lengths in successive

comparisons (cited in Brigell and Uhlarik [6]), agreeing with Woodworth [48]. However, the fact

of negative time error in estimating a line length raises some questions. For example, what will

happen to the underestimation e�ect for stimuli near the lower limen of perception? If the stimulus is

determined from the previous response, will stimuli converge to the lower limen, or will responses show

some kind of more irregular behavior? We have hypothesized at �rst that the response time series

in a cascading experiment would show a nonlinear behavior, however as we reviewed the previous

literature on successive comparison, it should be adequate to modify the hypothesis. That is, if the

human perceptual process possesses nonlinear dynamical properties, then:

� in accord with previous reports, the response would decrease (the comparison standard line

would shrink as the trials proceed) up to the point when the line is near the margin of perceptible

change and,

� the response time series after that point would show nonlinear or chaotic dynamics.
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4 Experiment

4.1 Participants

Twenty participants (four males and 16 females) were recruited; nine psychology undergraduate stu-

dents seeking to ful�l a course requirement, and eight psychology PhD students at the University of

Western Australia together with three people of the experimenter's personal acquittance. The par-

ticipants' ages varied from 17 years to 38 years old. All had normal or correct to normal vision. Age

and sex were not expected signi�cantly to a�ect line length estimations (see Verrillo [44]), so the data

from all observers was treated equally.

4.2 Apparatus

The apparatus used in this experiment is a PC with a 14-inch color display, and a two-button mouse

device. The program is written in C++ in MS-DOS.

4.3 Procedure

Participants sat in front of a PC display monitor in a semi-darkened room. The chair was adjusted so

that the observer's eyes were level with the center of the screen. The distance between the observer

and the display was approximately 50 cm. The screen resolution was 640 pixels wide by 480 pixels

high. The stimulus consisted of red vertical lines on a gray background. The lines were 3 pixels wide

and could be adjusted from 0 to 440 pixels high. The stimulus line was presented 243 pixels from the

left hand side of the screen for 750 ms. This was followed by a 350 ms inter-stimulus interval, during

which time the screen was blank. Then the control line was presented 243 pixels from the right hand

side of the screen (about 10.3 cm). The distance between the stimulus and control lines was 148 pixels

(about 6.3 cm). After the observer made their judgement about the length of the line (described in

detail below) there was a 700 ms delay before the next stimulus line was presented.

The origin of the both the standard and the control lines was �xed at the bottom of the display

screen. Observers were asked to use a mouse to adjust the top of the control line to match the stimulus

line in length, and then to click the left hand mouse button to record their response. The length of

the standard line for the �rst trial was set so that the line extended from the bottom of the working

screen to its center (220 pixels in length), while on subsequent trials, the standard line was set to the

length of the control line from the previous trial, again anchored at the bottom of the screen.

The length of the control line, when it appeared on the screen, was set to be the length of the

stimulus line (in pixels) plus or minus a random number of pixels between 0 and 40. Irrespective of

the size of the control line determined from previous trials, line length was constrained between 0

and 440 pixels. Prior to the experiment, the experimenter advised the observers to be as precise as

possible in their judgements. The experimenter also advised each observer to notify the experimenter

if they accidentally clicked the mouse during the course of experiment in order to correct the mistakes

immediately. Observers were na��ve to the method used for determining the stimulus line length on

each trial.

5 Results

The outcome of the experiment indicated that observers' responses tended to be of three distinct

forms, described below, although, of course, no individual gave exactly the same responses as any

other. The three categories of response series, of which an illustration over the course of 1000 trials is

shown in Figure 2, were:

case1 The line length decreases, converging to the lower limen of a single pixel at the bottom of the

screen (Figure 2(a) and 2(b)),
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(b) Figure 2: Changes in adjusted line

length (in pixels) for 1000 trials

in the cascading experiment. Ob-

servers' data can be grouped into

three distinct categories. In (a)

and (b), the line converged to the

lower limen. For (c) and (d), line

length decreased almost uniformly,

before oscillating within a small

range around a given value that dif-

fered for each observer. Observers

in the third category produced data

that did not appear to converge to

any particular value. Examples of

the third category are shown in (e)

and (f).

case2 The line length decreases up to certain point, but then oscillates irregularly within a narrow

range (Figure 2(c) and 2(d)), and

case3 Neither of the above-the dynamics di�er from case1 and case2 (Figures 2(e) and 2(f)).

The numbers of observers whose data could be classi�ed into each case are 6, 10, and 4 respectively.

The overall average of the positive and negative error (overestimation and underestimation of the

stimulus magnitude) can easily be deduced by looking at the asymptotic response; that is, if the

asymptotic response is below the starting point, then the overall average is negative and mutatis

mutandis for responses above the starting point. Of the 20 observers we tested, only three showed a

tendency towards positive errors, with the dynamics of their results obviously being of the form of

case3. This result agrees with previous reports that a line indeed is perceived to be shorter than its

physical length on average.

As for the dynamics of the time series, it is obvious that those in case1 would be unlikely to

show the trace of chaotic dynamics as they converged to the lower limen. Since the dynamics of those

in case2 consist of two phases we chose to pay particular attention to the second, oscillatory phase

which we thought might be well modeled by a chaotic dynamical system. In regard to applying a

chaos detecting algorithm to the time series, we have to be careful as Kantz and Schreiber [26] have

drawn attention to the need to distinguish between stochastic noise and chaos. In order to determine

whether the time series data that we collected was chaotic or stochastic noise, we adopted a method

described by Khadra et al. [27]. Their algorithm is applicable to relatively short time series such as

one in this experiment, as opposed to those methods that require a larger time series, such as those

that need to compute the Lyapunov exponent. The algorithm for relatively short time series was

introduced by Sugihara and May [41], but Ellner (1991, cited in Casdagli [7]) indicated their results

were faulty. Khadra et al.'s algorithm [27], however, overcomes the problems that lie not only in the

Sugihara and May's [41] algorithm, but in other algorithms as well, making it more reliable. The

basis of their algorithm is to state a null hypothesis that the given time series is not chaotic, and to

derive the probability of obtaining some test statistic, calculated from the test data, under the null

hypothesis. If this probability p is less than some predetermined �, then we reject the null hypothesis

and assert that deterministic chaos is detected. Here, we will only summarize their algorithm, but the

interested reader should review the technical and theoretical background of the algorithm in Khadra

et al. [27]. The reader who is familiar with Efron's bootstrap [8] will see that the algorithm developed
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by Khadra et al. is a close relative. Khadra et al.'s algorithm is as follows:

1. Compute the median absolute forecasting error (MAE, denoted as QD) of the original time series

with the forecasting algorithm with �xed embedding dimension d for �xed k nearest neighboring

states described in Khadra et al [27]. The delay factor (usually denoted as �) is set to the

minimal value (i.e. � = 1) in order to use all the data points. Since the method to choose

optimal d and k was not speci�ed in Khadra et al. [27], we adapted the parameters, over a small

range (2 � d � 7 ; 3 � k � 7), that minimize the MAE.

2. Create 128 surrogate data sets as described in Khadra et al. [27].

3. Compute the MAE for each surrogate data set.

4. Compute the mean (�s) and standard deviation (�s) of the 128 MAEs.

5. Compute �, where � = jQD � �sj=�s.
6. Compute the probability p =erfc(�=

p
2).

We applied the algorithm to those data in case2 (last 800 points) and case3 (1000 points), and

disregarded case1 data. Moreover, in order to show the validity of the algorithm, we applied it to

three randomly generated time series that are given by,

1) Gaussian white noise (W-N),

2) a random walk where Yk+1 = 0:99Yk+ Gaussian white noise where Y0 = 0:5 (R-W1), and

3) a random walk where Yk+1 = Yk+ random integer l in [�20; 20] where Y0 = 220 (R-W2),

as well as a dummy time series generated by the CCPR model. The results of the analysis are

summarised in Table 1. As can be seen from the table, evidence of chaotic dynamics was found in 8

instances out of the 14 data sets analyzed (two of such chaotic time series are shown in Figure 2(c) and

(e)) whereas all the randomly generated data gave the converse results. The dummy series generated

by the CCPR model also showed a sign of chaos that suggests its potential to model the data.

In order to test the CCPR model, we �rst �t it quantitatively to the data. We utilized the

simulated annealing method to optimize the parameters a1; e; c; d of the CCPR model in terms of

minimizing the sum of squared deviation between actual and predicted data values. Figure 3 shows

the dynamics of a case2 observer (Figure 2(c)) with the entire 800 points (a), �rst 400 points (b),

�rst 200 points (c), and �rst 100 points (d) (solid line) along with the dynamics estimated by the

CCPR model (dashed line). The response magnitude of each �gures was scaled to [0, 1] as the actual

minimum value (in pixels) of the time series to be 0 and the maximum to be 1. As one can easily

see, the simulated annealing method tended to determine the parameters so that the CCPR model

would estimate close to the moving mean value throughout the series. The failure to �t the data

with the CCPR model lead us to try simulating the data with the cascaded � recursion, that is,

Y0 = 0:5 + 10�9 i ; (Y0)k = 0:5 + Im(Y�)k�1 i: The results are shown in Figure 3 with dotted line. In

this case too, the model could not simulate the data.

The next attempt is to minimize the sum of squared deviation of the autocorrelation function of

the data and that of the time series generated by the CCPR model. The sample data taken here are

two from case2 with �rst 200 points dropped and two from case3|those four time series shown in

Figure 2 (Figure 4{7(a)). The autocorrelation was computed at lags up to one quarter of the entire

time series (i.e. 200 points for those in case2, and 250 points for case3) as suggested in Williams[47].

The autocorrelation function of the real data are shown in Figure 4{7(b). Those four �gures roughly

represent the range of autocorrelation functions of all the series. That is, for case2, the autocorrelation

functions either decreased uniformly and rather unsteadily, or went down to negative then came back

up to positive again, and for all case3, the functions decreased uniformly and rather smoothly. No

distinction was detected in the autocorrelation function between chaotic and stochastic data.
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Cascading line length data (d = 5; k = 7)

Observer case QD �s �s � p value Dynamics

1 2 0.643 0.401 0.104 2.327 0:020� Chaotic

2 2 0.936 0.355 0.171 3.390 0:001� Chaotic

3 2 0.191 0.437 0.171 1.441 0:150 Not chaotic

4 2 0.190 0.273 0.141 0.585 0:559 Not chaotic

5 2 4.326 0.325 0.099 40.573 6:87� 10�360� Chaotic

6 2 0.110 0.402 0.135 2.165 0:030� Chaotic

7 2 0.331 0.478 0.136 1.079 0:281 Not chaotic

8 2 0.501 0.323 0.073 2.423 0:015� Chaotic

9 2 4.102 0.411 0.093 39.790 3:21� 10�346� Chaotic

10 2 0.411 0.364 0.130 0.362 0:718 Not chaotic

11 3 4.336 0.371 0.152 26.152 9:46� 10�151� Chaotic

12 3 0.744 0.390 0.187 1.990 0:047� Chaotic

13 3 0.451 0.329 0.189 0.645 0:519 Not chaotic

14 3 0.419 0.511 0.321 0.285 0:776 Not chaotic

W-N 0.999 0.937 0.034 1.808 0:071 Not chaotic

R-W1 0.982 0.939 0.038 1.159 0:246 Not chaotic

R-W2 0.475 0.335 0.175 0.805 0:421 Not chaotic

CCPR 1.063 0.936 0.039 3.261 0:001� Chaotic

� p < 0:05

Table 1: Chaos Detection Parameters for Line Length Experiment

In this case also, the parameters a1; e; c; d of the CCPR model were estimated by the simulated

annealing method. The time series generated by the CCPR model are shown in Figure 4{7(c), and

its autocorrelation function along with that of the real data are shown in Figure 4{7(d). Since the

parameters were estimated to minimize the error in their autocorrelation function, the time series

generated by the CCPR model do not necessarily bear resemblance to the original data. However,

the CCPR model could produce close approximation of the observed spectrum at least in its overall

shape.

6 Discussion

The primary interest of this study was to investigate how well we could model the dynamics of

observers making iterated judgments of line length; �rst, with a descriptive time series analysis, and

then with a cascaded nonlinear function based on Gregson's � recursion. The descriptive analysis is

essentially an attempt to detect chaos, if it exists, within observers' responses. The use of CCPR

on the other hand was an attempt to develop a model of observers' responses that was capable of

generating the same response train as the observers produced.

Our results from the descriptive analysis indicate that the observers, with the proportion of 8:6,

show deterministic chaos in their successive judgements of line length. Furthermore, it is possible that

the perceptions of some of those observers who made stabilized responses (case1) are actually chaotic,

but that this is masked by the fact that a lower bound is imposed on the adjustment of the line by the

physical limit of the screen. Nonetheless, the fact that it is some, and not all, of the observers who

show evidence of chaotic behavior, suggests that there are considerable between-subject di�erences

in the form of responses. That is, for this particular judgement task, individual behavior varies from

chaotic to stochastic. Intuitively, the long-term behavior of other judgement tasks involving successive

comparisons, such as weight lifting or judging the pitch of a tone, would show similar results.

Our attempts to detect chaos in observers' responses were relatively successful. However, the

presence or absence of chaos is not the most crucial question here|what one would really like to



4
8

C
o
m
p
lex

b
eh
a
v
io
r
in

p
ercep

tu
a
l
lin
e
len

g
th

0
200

400
600

800
0.0

0.2

0.4

0.6

0.8

1.0
 R

aw
 C

cpr
 G

am

Line Length (arbitrary units)

T
ria

l

0
100

200
300

400
0.0

0.2

0.4

0.6

0.8

1.0

(b)

T
ria

l

Line Length (arbitrary units)

 R
aw

 C
cpr

 G
am

0
50

100
150

200
0.0

0.2

0.4

0.6

0.8

1.0

 

(c)

T
ria

l

Line Length (arbitrary units)

 R
aw

 C
cpr

 G
am

0
25

50
75

100
0.0

0.2

0.4

0.6

0.8

1.0

(d)

(a)

T
ria

l

Line Length (arbitrary units)

 R
aw

 C
cpr

 G
am

F
ig
u
re

3
:

E
x
a
m
p
le

o
f
a
n
a
ctu

a
l
d
a
ta

set

(so
lid

lin
e)

w
ith

th
e

co
rresp

o
n
d
in
g

o
p
ti-

m
ised

C
C
P
R

m
o
d
el

p
a
ra
m
eters

(d
a
sh
ed

lin
e)

a
n
d
th
e
ca
sca

d
ed

�
recu

rsio
n

(d
o
tted

lin
e).

T
h
e

g
ra
p
h
s

sh
o
w

th
e
en
tire

d
a
ta

set
(a
),

th
e
�
rst

4
0
0

p
o
in
ts

(b
),

th
e

�
rst

2
0
0
p
o
in
ts
(c),

a
n
d
th
e

�
rst

1
0
0
p
o
in
ts

(d
)
fo
r

th
e
o
b
serv

er
sh
o
w
n
in

F
ig
u
re

2
(c).

T
h
e
lin
e

len
g
th

is
in

a
rb
itra

ry

u
n
its.

0
200

400
600

800
0

100

200

300

400

(a)

Line Length (pixels)

T
rial

0
50

100
150

200

0.0

0.2

0.4

0.6

0.8

1.0

(b)

D
elay

Autocorrelation

0
200

400
600

800
0.0

0.2

0.4

0.6

0.8

1.0

(c)

T
rial

Predicted Line Length (Arbitrary units)

0
50

100
150

200

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Autocorrelation

D
elay  A

u
to

co
rre

la
tio

n
 o

f 
          R

a
w

 D
a

ta
 A

u
to

co
rre

la
tio

n
 o

f 
          P

re
d

icte
d

 T
im

e
 S

e
rie

s

F
ig
u
re

4
:

C
o
m
p
a
ri-

so
n
o
f
a
u
to
co
rrela

tio
n

fu
n
ctio

n
s
fo
r
th
e
d
a
ta

fro
m

th
e

lin
e

len
g
th

ex
p
erim

en
t

a
n
d

th
e

C
C
P
R

m
o
d
el.

(a
)

sh
o
w
s
th
e
a
ctu

a
l
tim

e

series
o
f
th
e
o
b
serv

er

sh
o
w
n

in
�
g
u
re

2
(c),

a
n
d
(b
)
sh
o
w
s
its

a
u
-

to
co
rrela

tio
n
fu
n
ctio

n
.

(c)
sh
o
w
s
th
e
tim

e
se-

ries
p
red

icted
b
y

th
e

C
C
P
R

m
o
d
el

to
m
in
i-

m
ize

th
e
erro

r
b
etw

een

th
e

tw
o

a
u
to
co
rrela

-

tio
n

fu
n
ctio

n
s.

(d
)

sh
o
w
s

th
e

a
u
to
co
rre-

la
tio

n
fu
n
ctio

n
o
f
(c)

a
lo
n
g
w
ith

th
e
co
m
p
a
r-

iso
n
(b
).



T
a
k
u
o
H
en
m
i
a
n
d
M
ich

a
el
L
.
K
a
lish

4
9

0
200

400
600

800
0

100

200

300

400

(a)

Line Length (pixels)

T
rial

0
50

100
150

200

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(b)

D
elay

Autocorrelation

0
200

400
600

800
0.0

0.2

0.4

0.6

0.8

1.0

(c)

T
rial

Predicted Line Length (Arbitrary units)

0
50

100
150

200

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Autocorrelation

D
elay  A

u
to

co
rre

la
tio

n
 o

f 
          R

a
w

 D
a

ta
 A

u
to

co
rre

la
tio

n
 o

f 
          P

re
d

icte
d

 T
im

e
 S

e
rie

s

F
ig
u
re

5
:

C
o
m
p
a
ri-

so
n
o
f
a
u
to
co
rrela

tio
n

fu
n
ctio

n
s
fo
r
th
e
d
a
ta

fro
m

th
e

lin
e

len
g
th

ex
p
erim

en
t

a
n
d

th
e

C
C
P
R

m
o
d
el.

(a
)

sh
o
w
s
th
e
a
ctu

a
l
tim

e

series
o
f
th
e
o
b
serv

er

sh
o
w
n

in
�
g
u
re

2
(d
),

a
n
d
(b
)
sh
o
w
s
its

a
u
-

to
co
rrela

tio
n
fu
n
ctio

n
.

(c)
sh
o
w
s
th
e
tim

e
se-

ries
p
red

icted
b
y

th
e

C
C
P
R

m
o
d
el

to
m
in
i-

m
ize

th
e
erro

r
b
etw

een

th
e

tw
o

a
u
to
co
rrela

-

tio
n

fu
n
ctio

n
s.

(d
)

sh
o
w
s

th
e

a
u
to
co
rre-

la
tio

n
fu
n
ctio

n
o
f
(c)

a
lo
n
g
w
ith

th
e
co
m
p
a
r-

iso
n
(b
).

k
n
o
w
is
th
e
n
a
tu
re

o
f
th
e
p
ro
cess

u
n
d
erly

in
g
th
e
p
h
en
o
m
en
o
n
o
b
serv

ed
.
It
seem

s
in
tu
itiv

ely
p
la
u
sib

le

th
a
t
th
e
p
ro
cess

o
f
itera

ted
p
ercep

tio
n
en
su
es

fro
m

a
sim

p
le
u
n
d
erly

in
g
n
o
n
lin
ea
r
d
y
n
a
m
ic,

su
ch

a
s

G
reg

so
n
's
�
recu

rsio
n
,
w
h
ich

h
a
s
p
ro
v
ed

u
sefu

l
in

o
th
er

in
sta

n
ces

o
f
p
sy
ch
o
p
h
y
sica

l
m
o
d
elin

g
.
B
u
t,

d
em

o
n
stra

tin
g
th
is

rig
o
ro
u
sly,

b
y
m
a
tch

in
g
th
e
em

p
irica

l
d
a
ta

w
ith

d
a
ta

o
b
ta
in
ed

fro
m

n
o
n
lin
ea
r

d
y
n
a
m
ica

l
eq
u
a
tio

n
s,
is
a
n
o
n
triv

ia
l
m
a
tter.

W
e
h
a
v
e
m
a
d
e
so
m
e
in
itia

l
e�
o
rts

in
th
is

d
irectio

n
,
u
sin

g
sim

u
la
ted

a
n
n
ea
lin
g
a
s
a
m
eth

o
d
o
f

estim
a
tin

g
o
p
tim

a
l
p
a
ra
m
eter

v
a
lu
es
fo
r
th
e
rea

l
�
recu

rsio
n
a
n
d
th
en

fo
r
th
e
C
C
P
R
.
T
h
e
rea

l
g
a
m
m
a

fa
iled

u
tterly

in
th
is
ex
p
erim

en
t,
p
ro
v
id
in
g
,
a
s
th
e
o
p
tim

a
l
�
t,
a
tra

jecto
ry

co
n
v
erg

in
g
to

a
�
x
ed

p
o
in
t.

T
h
e
C
C
P
R
fa
red

so
m
ew

h
a
t
b
etter,

su
g
g
estin

g
th
a
t
C
C
P
R

is
a
m
o
re

p
la
u
sib

le
m
o
d
el

th
a
n
th
e
rea

l

g
a
m
m
a
recu

rsio
n
;
h
o
w
ev
er

th
e
resu

lts
h
ere

w
ere

n
o
t
en
tirely

sa
tisfa

cto
ry

eith
er.

W
h
a
t
th
e
C
C
P
R

p
ro
d
u
ced

,
w
ith

o
p
tim

a
l
p
a
ra
m
eters,

w
a
s
a
sm

o
o
th

cu
rv
e
a
p
p
ro
x
im
a
tio

n
,
n
o
t
u
n
lik
e
a
m
o
v
in
g
a
v
era

g
e

o
f
th
e
o
rig

in
a
l
d
a
ta
.

O
n
e
co
u
ld

rea
so
n
a
b
ly

co
n
clu

d
e
fro

m
th
ese

resu
lts

th
a
t
th
e
C
C
P
R
a
n
d
ca
sca

d
ed

�
a
re

u
n
su
ita

b
le

fo
r
m
o
d
elin

g
th
e
k
in
d
o
f
ch
a
o
tic

b
eh
a
v
io
r
th
a
t
w
e
fo
u
n
d
in

so
m
e
o
b
serv

ers'
resp

o
n
ses,

irresp
ectiv

e

o
f
w
h
a
t
p
a
ra
m
eter

va
lu
es

o
n
e
ch
o
o
ses.

O
n
th
e
o
th
er

h
a
n
d
,
it
tu
rn
s
o
u
t
th
a
t
th
e
C
C
P
R

m
o
d
el
d
id

a
fa
ir
jo
b
o
f
sim

u
la
tin

g
th
e
a
u
to
co
rrela

tio
n
fu
n
ctio

n
o
f
th
e
o
rig

in
a
l
d
a
ta

a
lth

o
u
g
h
th
e
tim

e
series

g
en
era

ted
b
y
th
e
C
C
P
R
to

�
t
th
e
a
u
to
co
rrela

tio
n
fu
n
ctio

n
d
o
n
o
t
sh
o
w
a
n
y
p
a
rticu

la
r
resem

b
la
n
ce

to
th
e
o
rig

in
a
l
d
a
ta
.
T
h
is
resu

lt
is
n
o
t
su
rp
risin

g
sin

ce
o
u
r
a
ttem

p
t
h
ere

is
to

�
t
th
e
a
u
to
co
rrela

tio
n

fu
n
ctio

n
a
s
a
w
h
o
le,

a
n
d
n
o
t
to

sh
o
w

th
e
o
v
era

ll
tren

d
o
f
o
rig

in
a
l
tim

e
series.

T
h
is
co
u
ld

su
g
g
est

th
a
t
th
e
C
C
P
R
is
in

so
m
e
sen

se
w
ith

in
th
e
sa
m
e
fa
m
ily

o
f
d
y
n
a
m
ica

l
sy
stem

s
a
s
th
e
p
sy
ch
o
p
h
y
sica

l

d
y
n
a
m
ica

l
sy
stem

g
en
era

tin
g
th
e
o
b
serv

ed
d
a
ta
.
O
n
e
co
u
ld

co
n
stru

ct
a
so
m
ew

h
a
t
p
la
u
sib

le
a
rg
u
m
en
t

th
a
t
th
e
p
sy
ch
o
p
h
y
sica

l
p
h
en
o
m
en
o
n
o
b
serv

ed
co
n
sists

o
f
th
e
C
C
P
R
p
lu
s
n
o
ise.

H
o
w
ev
er,

w
e
b
eliev

e

th
a
t
th
is
is
n
o
t
th
e
ca
se,

a
n
d
th
a
t
th
e
d
a
ta

rev
ea
ls
a
d
eterm

in
istic

ch
a
o
s
w
h
ich

is
n
o
t
rev

ea
led

b
y
th
e

�
a
n
d
th
e
C
C
P
R
m
o
d
els

th
a
t
h
a
v
e
b
een

th
e
su
b
jects

o
f
o
u
r
co
m
p
u
ta
tio

n
a
l
ex
p
erim

en
ts.



5
0

C
o
m
p
lex

b
eh
a
v
io
r
in

p
ercep

tu
a
l
lin
e
len

g
th

0
200

400
600

800
1000

0

100

200

300

400

500

(a)

Line Length (pixels)

T
rial

0
50

100
150

200
250

0.0

0.2

0.4

0.6

0.8

1.0

(b)

D
elay

Autocorrelation

0
200

400
600

800
1000

0.0

0.2

0.4

0.6

(c)

T
rial

Predicted Line Length (Arbitrary units)

0
50

100
150

200
250

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Autocorrelation

D
elay  A

u
to

co
rre

la
tio

n
 o

f 
          R

a
w

 D
a

ta
 A

u
to

co
rre

la
tio

n
 o

f 
          P

re
d

icte
d

 T
im

e
 S

e
rie

s

F
ig
u
re

6
:

C
o
m
p
a
ri-

so
n
o
f
a
u
to
co
rrela

tio
n

fu
n
ctio

n
s
fo
r
th
e
d
a
ta

fro
m

th
e

lin
e

len
g
th

ex
p
erim

en
t

a
n
d

th
e

C
C
P
R

m
o
d
el.

(a
)

sh
o
w
s
th
e
a
ctu

a
l
tim

e

series
o
f
th
e
o
b
serv

er

sh
o
w
n

in
�
g
u
re

2
(e),

a
n
d
(b
)
sh
o
w
s
its

a
u
-

to
co
rrela

tio
n
fu
n
ctio

n
.

(c)
sh
o
w
s
th
e
tim

e
se-

ries
p
red

icted
b
y

th
e

C
C
P
R

m
o
d
el

to
m
in
i-

m
ize

th
e
erro

r
b
etw

een

th
e

tw
o

a
u
to
co
rrela

-

tio
n

fu
n
ctio

n
s.

(d
)

sh
o
w
s

th
e

a
u
to
co
rre-

la
tio

n
fu
n
ctio

n
o
f
(c)

a
lo
n
g
w
ith

th
e
co
m
p
a
r-

iso
n
(b
).

T
h
e
�
m
o
d
el
w
a
s
in
tro

d
u
ced

in
to

p
sy
ch
o
p
h
y
sics

in
o
rd
er
to

p
ro
v
id
e
a
d
eterm

in
istic

ex
p
la
n
a
tio

n
fo
r

p
sy
ch
o
p
h
y
sica

l
p
h
en
o
m
en
a
w
h
ich

w
ere

p
rev

io
u
sly

w
ritten

o
�
a
s
\
ju
st
n
o
ise"

.
In

th
is
ca
se,

h
o
w
ev
er,

w
e

h
a
v
e
a
n
a
p
p
a
ren

tly
ch
a
o
tic

p
sy
ch
o
p
h
y
sica

l
p
h
en
o
m
en
o
n
w
h
ich

n
eith

er
th
e
�
n
o
r
th
e
C
C
P
R
p
red

icts

in
a
n
y
sim

p
le
w
a
y.

T
h
e
o
n
ly
clu

e
w
e
h
a
v
e
is
th
a
t
th
e
C
C
P
R
d
o
es

b
etter

th
a
n
�
|
it
a
t
lea

st
g
iv
es

th
e

tren
d
o
f
th
e
d
a
ta
.
F
u
rth

er
stu

d
y
w
ill
b
e
req

u
ired

to
d
eterm

in
e
th
e
fo
rm

o
f
th
e
n
o
n
lin
ea
r
d
y
n
a
m
ic
th
a
t

p
red

icts
n
o
t
o
n
ly

th
e
tren

d
b
u
t
th
e
ch
a
o
tic

n
a
tu
re

o
f
th
e
itera

ted
p
ercep

tio
n
p
h
en
o
m
en
o
n
.
J
u
st

a
s

th
e
cla

ssica
l
p
sy
ch
o
p
h
y
sica

l
ex
p
erim

en
ts

led
to

th
e
in
v
en
tio

n
o
f
�
,
th
is
ex
p
erim

en
t
m
u
st

lea
d
to

th
e

d
ev
elo

p
m
en
t
o
f
m
o
re

su
b
tle

n
o
n
lin
ea
r
d
y
n
a
m
ica

l
m
o
d
els.

In
a
d
d
itio

n
to

th
e
p
rim

a
ry

resu
lts

d
escrib

ed
a
b
o
v
e,
o
u
r
ex
p
erim

en
ts
a
lso

p
ro
v
id
ed

so
m
e
seco

n
d
a
ry

resu
lts,

o
f
p
a
rticu

la
r
n
o
te

b
ein

g
th
e
sa
m
e
ten

d
en
cy

to
w
a
rd
s
n
eg
a
tiv

e
erro

r
th
a
t
w
ere

fo
u
n
d
in

ea
rlier

ju
d
g
em

en
t
ta
sk
s
rev

iew
ed

in
W
o
o
d
w
o
rth

[4
8
],
a
n
d
in

th
e
lin
e
len

g
th

ju
d
g
em

en
t
ex
p
erim

en
ts
rev

iew
ed

in
th
e
th
ird

sectio
n
o
f
th
is
p
a
p
er.

M
o
reo

v
er,

o
u
r
ex
p
erim

en
ts
rev

ea
led

th
ree

ty
p
es

o
f
lo
n
g
term

tren
d
s

in
th
e
ju
d
g
em

en
ts

o
f
lin
e
len

g
th
.
S
p
eci�

ca
lly,

w
h
ile

so
m
e
o
b
serv

ers
co
n
tin

u
ed

u
n
d
erestim

a
tin

g
th
e

len
g
th

to
th
e
lo
w
er

lim
en
,
th
e
m
a
jo
rity

b
eh
a
v
ed

irreg
u
la
rly

w
h
en

th
e
lin
e
w
a
s
v
ery

sh
o
rt;

so
m
e
ev
en

sh
o
w
ed

su
ch

irreg
u
la
rity

th
ro
u
g
h
o
u
t
th
e
ex
p
erim

en
t.
In

th
is
ex
p
erim

en
t,
th
e
lin
e
w
a
s
a
n
ch
o
red

a
t
th
e

b
o
tto

m
o
f
th
e
d
isp

la
y
w
ith

th
e
lin
e
len

g
th

b
ein

g
a
d
ju
sted

o
n
ly

fro
m

th
e
to
p
.
If,

h
o
w
ev
er,

o
n
e
en
d
o
f

th
e
lin
e
h
a
d
b
een

a
n
ch
o
red

a
t
th
e
cen

ter
o
f
th
e
d
isp

la
y
w
ith

th
e
lin
e
ca
p
a
b
le
o
f
b
ein

g
a
d
ju
sted

eith
er

u
p
w
a
rd
s
o
r
d
o
w
n
w
a
rd
s,
th
en

it
is
p
la
u
sib

le
to

a
ssu

m
e
th
a
t
th
e
m
a
jo
rity

o
f
c
a
se
1
o
b
serv

ers
w
o
u
ld
still

h
a
v
e
sh
o
w
n
irreg

u
la
rity

in
th
eir

resp
o
n
ses

w
h
en

th
e
lin
e
w
a
s
v
ery

sh
o
rt.



T
a
k
u
o
H
en
m
i
a
n
d
M
ich

a
el
L
.
K
a
lish

5
1

0
200

400
600

800
1000

0

100

200

300

400

500

(a)

Line Length (pixels)

T
rial

0
50

100
150

200
250

0.0

0.2

0.4

0.6

0.8

1.0

(b)

D
elay

Autocorrelation

0
200

400
600

800
1000

0.0

0.2

0.4

0.6

(c)

T
rial

Predicted Line Length (Arbitrary units)

0
50

100
150

200
250

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Autocorrelation

D
elay  A

u
to

co
rre

la
tio

n
 o

f 
          R

a
w

 D
a

ta
 A

u
to

co
rre

la
tio

n
 o

f 
          P

re
d

icte
d

 T
im

e
 S

e
rie

s

F
ig
u
re

7
:

C
o
m
p
a
ri-

so
n
o
f
a
u
to
co
rrela

tio
n

fu
n
ctio

n
s
fo
r
th
e
d
a
ta

fro
m

th
e

lin
e

len
g
th

ex
p
erim

en
t

a
n
d

th
e

C
C
P
R

m
o
d
el.

(a
)

sh
o
w
s
th
e
a
ctu

a
l
tim

e

series
o
f
th
e
o
b
serv

er

sh
o
w
n

in
�
g
u
re

2
(f),

a
n
d
(b
)
sh
o
w
s
its

a
u
-

to
co
rrela

tio
n
fu
n
ctio

n
.

(c)
sh
o
w
s
th
e
tim

e
se-

ries
p
red

icted
b
y

th
e

C
C
P
R

m
o
d
el

to
m
in
i-

m
ize

th
e
erro

r
b
etw

een

th
e

tw
o

a
u
to
co
rrela

-

tio
n

fu
n
ctio

n
s.

(d
)

sh
o
w
s

th
e

a
u
to
co
rre-

la
tio

n
fu
n
ctio

n
o
f
(c)

a
lo
n
g
w
ith

th
e
co
m
p
a
r-

iso
n
(b
).

7
A
ck
n
o
w
le
d
g
e
m
e
n
ts

W
e
w
o
u
ld

lik
e
to

th
a
n
k
D
r.

B
en

G
o
ertzel

a
t
In
telliG

en
esis

C
o
rp
o
ra
tio

n
,
A
sso

cia
te

P
ro
fesso

r
L
es

J
en
n
in
g
s
a
t
th
e
M
a
th

D
ep
a
rtm

en
t,

M
r.

M
a
rk

D
ia
m
o
n
d
a
n
d
M
r.

J
a
so
n
F
o
rte

a
t
th
e
P
sy
ch
o
lo
g
y

D
ep
a
rtm

en
t
in

th
e
U
n
iv
ersity

o
f
W
estern

A
u
stra

lia
fo
r
u
sefu

l
d
iscu

ssio
n
s.

R
e
fe
re
n
c
e
s

[1
]
A
d
a
ch
i,
M
.
a
n
d
A
ih
a
ra
,
K
.
\
A
sso

cia
tiv

e
d
y
n
a
m
ics

in
a
ch
a
o
tic

n
eu
ra
l
n
etw

o
rk
"
,
1
9
9
6
N
eu
ra
l

N
etw

o
rks,

1
0
,
N
o
.
1
,
8
3
{
9
8
.

[2
]
A
ih
a
ra
,
K
.
a
n
d
M
a
tsu

m
o
to
,
G
.
\
C
h
a
o
tic

o
scilla

tio
n
s
a
n
d
b
ifu

rca
tio

n
s
in

sq
u
id

g
ia
n
t
a
x
o
n
s"
,

1
9
8
6
C
h
a
o
s,
ed
ited

b
y
H
o
ld
en
,
2
5
7
{
2
6
9
.

[3
]
A
ih
a
ra
,
K
.
\
K
a
o
su

n
y
u
-ra

ru
n
etto

w
a
-k
u
"
[C
h
a
o
s
n
eu
ra
l
n
etw

o
rk
],
1
9
9
0
K
a
o
su
:
K
a
o
su

R
iro

n
n
o

K
iso

to
O
u
y
o
u
[C
h
a
o
s:

B
a
sis

a
n
d
A
p
p
lica

tio
n
o
f
C
h
a
o
s
T
h
eo
ry
]
(J
a
p
a
n
ese),

ed
ited

b
y
A
ih
a
ra
,

2
8
9
{
3
1
7
.

[4
]
A
ih
a
ra
,
K
.
\
C
h
a
o
s
in
n
eu
ra
l
resp

o
n
se
a
n
d
d
y
n
a
m
ica

l
n
eu
ra
l
n
etw

o
rk

m
o
d
els:

T
o
w
a
rd

a
n
ew

g
en
-

era
tio

n
o
f
a
n
a
lo
g
o
f
co
m
p
u
tin

g
"
,
1
9
9
4
T
o
w
a
rd
s
th
e
H
a
rn
essin

g
o
f
C
h
a
o
s,
ed
ited

b
y
Y
a
m
a
g
u
ch
i,

8
3
{
9
8
.

[5
]
B
rig

ell,
M
.,
U
h
la
rik

,
J
.,
a
n
d
G
o
ld
h
o
rn
,
P
.
\
C
o
n
tex

tu
a
l
in

u
en
ces

o
n
ju
d
g
em

en
ts
o
f
lin
ea
r
ex
ten

t"
,

1
9
7
7
J
o
u
rn
a
l
o
f
E
xperim

en
ta
l
P
sy
ch
o
logy

:
H
u
m
a
n
P
ercep

tio
n
a
n
d
P
erfo

rm
a
n
ce,

3
,
N
o
.
1
,
1
0
5
{

1
1
8
.



52 Complex behavior in perceptual line length

[6] Brigell, M. and Uhlarik, J. \The relational determination of length illusions and length afteref-

fects", 1979 Perception, 8, 187{197.

[7] Casdagli, M. \Chaos and deterministic versus stochastic non-linear modelling", 1991 Journal of

the Royal Statistical Society B, 54, No. 2, 303{328.

[8] Efron, B. \Bootstrap methods: Another look at the jack-knife", 1979 Annals of Statistics, 7,

1{6.

[9] Erlebacher, A. and Sekuler, R. \Perceived length depends on exposure duration: Straight lines

and M-L stimuli", 1974 Journal of Experimental Psychology, 103, No. 4, 724{728.

[10] Freeman, W. J. \The physiology of perception", 1979 Scienti�c American, Feb, 34{41.

[11] Freeman, W. J. \Neural networks and chaos", 1994 Journal of Theoretical Biology, 171, 13{18.

[12] Glass, L. and Mackey, M. C., 1988 From Clocks to Chaos: The Rhythms of Life.

[13] Glass, L. and Kaplan, D. \Time series analysis of complex dynamics in physiology and medicine",

1993 Medical Progress through Technology, 19, 115{128.

[14] Gregson, R. A. M., 1988 Nonlinear Psychophysics.

[15] Gregson, R. A. M. \Nonlinear psychophysics and Fechner's Paradox", 1989 Mathematical and

Theoretical Systems, edited by Keats, 208{218.

[16] Gregson, R. A. M. and Britton, L. A. \The size-weight illusion in 2-D nonlinear psychophysics",

1990 Perception and Psychophysics, 48, No. 4, 343{356.

[17] Gregson, R. A. M. \Similarities derived from 3-d nonlinear psychophysics: Variance distribu-

tions", 1994 Psychometrika, 59, No. 1, 97{110.

[18] Gregson, R. A. M., 1995 Cascades and Fields in Perceptual Psychophysics.

[19] Gregson, R. A. M., submitted Narrow parameter windows and analogues of contextual noise in

nonlinear psychophysics.

[20] Halasz, M. F. \Nonlinear dynamics in behavioral systems", 1994 American Psychologist, 50,

No. 2, 107{108.

[21] Henmi, T. \Technical report submitted to The University of Western Australia, Perth Western

Australia", 1996.

[22] Jaeger, T. \Contextual e�ects in the parallel lines illusion: Some implications for assimilation

theory", 1994 Perceptual and Motor Skills, 61, 1263{1273.

[23] Jeong, J., Joung, M. K., and Kim, S. Y. \Quali�cation of emotion by nonlinear analysis of

the chaotic dynamics of electroencephalograms during perception of 1/f music", 1994 Biological

Cybernetics, 78, No. 3, 217{225.

[24] Jordan, K. and Schiano, D. J. \Serial processing and the parallel-lines illusion: Length contrast

through relative spatial separation of contours", 1986 Perception and Psychophysics, 40, No. 6,

384{390.

[25] Jordan, K. and English, P. W. \Simultaneous sampling and length contrast", 1989 Perception

and Psychophysics, 46, No. 6, 546{554.

[26] Kantz, H. and Schreiber, T., 1997 Nonlinear Time Series Analysis.



Takuo Henmi and Michael L. Kalish 53

[27] Khadra, L. M. Maayah, T. J., and Dickhaus, H. \Detecting chaos in HRV signals in human

cardiac transplant recipients", 1997 Computers and Biomedical Research, 30, 188{199.

[28] K�unnapas, T. M. \Inuence of frame size on apparent length of a line", 1955 Journal of Exper-

imental Psychology, 30, No. 3, 168{170.

[29] Krueger, L. E. \Reconciling Fechner and Stevens: Toward a uni�ed psychophysical law", 1989

Behavioral and Brain Sciences, 12, 251{320.

[30] Luo, C. R. and Wang, S. \E�ects of �gure context on the apparent length of a line", 1997

Perceptual and Motor Skills, 85, 551{558.

[31] Mees, A., Aihara, K., Adachi, M., Judd, K., Ikeguchi, T., and Matsumoto, G. \Deterministic

prediction and chaos in squid axon response", 1991 Santa Fe, New Mexico: Santa Fe Institute,

reference number 91-12-049.

[32] Momose, K., Koyama K., and Uchiyama, A. \Nonlinear analysis of visual evoked potentials

elicited by color stimulation", 1997 Methods of Information in Medicine, 36, 315{318.

[33] Pietarinen, J. and Virsu, V. \Geometric illusion: II. Features of the method of magnitude

estimation of length di�erences", 1967 Scandinavian Journal of Psychology, 8, 172{176.

[34] Pollock, W. T. and Chapanis, A. \The apparent length of a line as a function of its inclination",

1952 Quarterly Journal of Experimental Psychology, 4, 170{178.

[35] Prinzmetal, W. and Gettleman, L. \Vertical-horizontal illusion: One eye is better than two",

1993 Perception and Psychophysics, 53, No. 3, 81{88.

[36] Prinzmetal, W. andWillson, A. \The e�ect of attention on phenomenal length", 1997 Perception,

26, 193{205.

[37] Richards, W., Wilson, H. R., and Sommer, M. A. \Chaos in percepts?", 1994 Biological Cyber-

netics, 70, No. 4, 345{349.

[38] Ross, J. and Di Lollo, V. \A constant failure of the power law for lifted weight", 1970 Perception

and Psychophysics, 8, 289-290.

[39] Smithson, M. \Judgement under chaos", 1997 Organizational Behavior and Human Decision

Processes, 69, No. 1, 59{66.

[40] Stevens, S. S., 1986 Psychophysics: Introduction to Its Perceptual, Neural, and Social Prospects,

New introduction by Marks.

[41] Sugihara, G. and May, R. \Nonlinear forecasting as a way of distinguishing chaos from mea-

surement error in time series", 1990 Nature, 344, No. 19, 734{741.

[42] Tsal, T. and Shalev, L. \Inattention magni�es perceived length: The attentional receptive �eld

hypothesis", 1996 Journal of Experimental Psychology: Human Perception and Performance,

22, No. 1, 233{243.

[43] Uttal, W. R., 1973 The Psychobiology of Sensory Coding.

[44] Verrillo, R. T. \Stability of line-length estimates using the method of absolute magnitude esti-

mation", 1983 Perception and Psychophysics, 33, No. 3, 261{265.

[45] Virsu, V. \Geometric illusions: I. E�ects of �gure type, instruction, and pre- and internal

training on magnitude and decrement of illusion", 1967 Scandinavian Journal of Psychology, 8,

161{171.



54 Complex behavior in perceptual line length

[46] Watson, A. \A Riemann geometric explanation of the visual illusions and �gural after-e�ects",

1978 Mathematical and Theoretical Systems, edited by Keat, 139{169.

[47] Williams, G. P., 1997 Chaos Theory Tamed.

[48] Woodworth, R. S., 1950 Experimental Psychology, �fth edition.

[49] Yokose, Z., Uchiyama, M., and Yokoyama, A. \Shiteki gensyou to shigeki jikan tono kankei

ni tuite I|Mie no nagasa�ookisa no shincyou�kakudaikatei" [The relationship between visual

phenomina and the stimulating time (I)|About the growing process of the perceived length

and size], 1957 Japanese Journal of Psychology (Japanese), 28, 10{17.



John Klopp, Patrick Johnston, Valeriy Nenov and Eric Halgren 55

Wide-band spectral power uctuations characterize the response of
simulated cortical networks to increasing stimulus intensity

John Klopp

University of Utah, 729 Arapeen,

Center for Advanced Medical Technologies,

Salt Lake City, UT 84108.

jklopp@doug.med.utah.edu

Patrick Johnston Valeriy Nenov

Eric Halgren

Abstract

The hippocampus is an anatomically distinct region of the medial temporal lobe that plays a

critical role in the formation of declarative memories. Here we show that a computer simulation of
simple compartmental cells organized with basic hippocampal connectivity is capable of producing
stimulus intensity sensitive wide-band uctuations of spectral power similar to that seen in real

EEG. While previous computational models have been designed to assess the viability of the
putative mechanisms of memory storage and retrieval, they have generally been too abstract
to allow comparison with empirical data. Furthermore, while the anatomical connectivity and

organization of the hippocampus is well de�ned, many questions regarding the mechanisms that
mediate large-scale synaptic integration remain unanswered. For this reason we focus less on the
speci�cs of changing synaptic weights and more on the population dynamics.

Spectral power in four distinct frequency bands were derived from simulated �eld potentials of
the computational model and found to depend on the intensity of a random input. The majority
of power occurred in the lowest frequency band (3{6 Hz) and was greatest to the lowest intensity

stimulus condition (1% maximal stimulus). In contrast, higher frequency bands ranging from 7{45
Hz show an increase in power directly related with an increase in stimulus intensity. This trend
continues up to a stimulus level of 15% to 20% of the maximal input, above which power falls

dramatically. These results suggest that the relative power of intrinsic network oscillations are
dependent upon the level of activation and that above threshold levels all frequencies are damped,
perhaps due to over activation of inhibitory interneurons.

1 Introduction

The human brain is extensively divided into functionally discrete and overlapping regions. Com-

munication within the brain in the form of electro-chemical interaction is never ending and changes

dramatically with the state of the organism. The cellular membranes of individual neurons have

electrical properties that uctuate over time and populations of neurons that oscillate in synchrony

produce electrical signals that can be detected at the scalp with EEG. Electroencephalography (EEG)

is a convenient method for obtaining non-invasive real time measurements of neural processes. EEG

is generated by correlated activity of groups of cells oriented perpendicular to the recording electrode

[12]. In traditional scalp EEG the recording contacts are located outside of the brain and therefore

only synchronous activity that involves a range from thousands to millions of cells and as many as

1010 synapses contribute to the EEG signal. As a general rule, rhythmic oscillations of the EEG are

associated with idle or resting states. This has historical roots stemming from early EEG studies that

associated increased synchronous activity with decreased mentation [4]. However scalp EEG presents

a global view of brain waves and some EEG rhythms may play a critical role in coordinating cognitive

processing between distant cortical areas [3]. Moreover, EEG studies that use intracranial recordings

have revealed local event related and wide-band spectral power uctuations that are speci�c both to

the region of the brain and the timing of the task [9].
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Figure 1: General anatomic location and connectivity of the hippocampal formation. A) Location

of the hippocampal formation within the brain. The hippocampus is just posterior to the amygdala

and runs along the inferior horn of the lateral ventricle in the medial temporal lobe. The fornix

carries axons from CA3 pyramidal cells to the contralateral hippocampus. B) Structural subdivisions

of the hippocampal formation and output to neocortex. The main direct input to the hippocampus

originates from the perforant pathway that originates from the entorhinal cortex and granule cells in

the dentate region.

We constructed a neural network model of the hippocampal region to test if increases in synaptic

input evoked increases in spectral power as has been hypothesized from studies with intracranial EEG.

The hippocampal region was chosen as a subject for modeling due to its relatively simple structure,

its role in integrating information from many cortical areas and the large body of scienti�c literature

that describes its form and function. The hippocampus is located along the inferior horn of the lateral

ventricle in the medial temporal lobe and has direct and / or indirect reciprocal connections with

all major neocortical multi-modal association areas as well as many sensory areas [2] (Figure 1A).

Most of the neocortical input to the hippocampus is via the entorhinal cortex and dentate gyrus.

The hippocampus is broadly divided into 2 major areas, CA3 and CA1, and we treat the dentate

region as a simple input layer (Figure 1B). Taken together, the CA regions and the dentate region are

commonly termed as the hippocampal formation. The synaptic connections between hippocampal cells

are capable of rapid alteration of their post-synaptic response through activity dependent changes.

This synaptic plasticity is Hebbian, in other words it relies upon depolarisation of the postsynaptic

cell coincident with the activation of the presynaptic cell, and is speci�c for the activated synapse.

These characteristics of activity dependent alteration of synaptic e�cacy and wide spread reciprocal

connectivity with neocortical associative areas are considered essential for the hippocampal formation's

role in normal brain function as a temporary repository of declarative memory traces.

A number of recent neural models have identi�ed the hippocampal formation as a temporary

storage site for the declarative memory trace [8, 1, 13, 15, 10] These models have speci�cally identi�ed

the auto-associative network of pyramidal cells within the CA3 �eld as a prime candidate for the

substrate of rapid short-term declarative memory formation and storage. Pyramidal cells of the

hippocampal CA regions are organized in a regular laminar structure and are thereby capable of

producing strong �eld potentials when groups of the cells are synchronously active. In order to

simulate data acquisition, we included in our computer model simulated probes that sampled from
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the neural network in a way comparable to intracranial EEG contacts placed within neural tissue.

With this method we were able to collect data and apply analytical tools to the data in a manner

similar to EEG collected from real neural tissue.

2 Computational Methodology

2.1 Modeling Platform

Computational models implemented at the Pittsburgh Supercomputing Center were written in PGE-

NESIS [7], a parallel version of GENESIS (GEneral NEural SImulation System) [5]. The standard

GENESIS simulation package allows easy integration of simulation objects such as cellular compart-

ments and cell-membrane channel conductances. PGENESIS allows a computer simulation to be

distributed across multiple processors using Parallel Virtual Machine software and has been compiled

and optimized for the CRAY T3E. The Cray T3E has 512 high-performance Digital Alpha 64-bit

microprocessors (PEs), half running at 300 MHz and half running at 450 MHz. The 300 MHz PE's

have a theoretical peak speed of 600 Mops, and the 450 MHz PE's have a theoretical peak speed

of 900 Mops, bringing the machine's theoretical peak speed to 384 GFlops. The T3E's topology is

that of a three-dimensional torus. Each processor runs a CHORUS-based microkernel. The memory

is logically shared and physically distributed, with each PE having 128 MB.

2.2 The Single Cell Model

The model includes compartmental representations of excitatory pyramidal neurons, inhibitory in-

terneurons and a large input layer of dentate granule cell spike generators. Pyramidal neurons consist

of multiple compartments with a minimally branched dendritic morphology and incorporate fast Na+,

K+(dr), K+(ahp) and Ca++ conductances (Figure 2A). Individual cells maintain compartmentalized

membrane potentials that uctuate with synaptic activation and neurons are capable of producing

a variety of �ring patterns and refractory periods including complex bursts and single spikes with a

depolarisation envelope that is similar to real hippocampal pyramidal cells (Figure 3). Interneurons

are modeled as a single compartment and include fast Na+ and K+(dr) currents giving a faster �ring

latency and a greater peak �ring rate than the pyramidal cells (Figure 3B and Figure 4). Dentate

cells are simple binary spike generators and are used for input into the network.

2.3 The Network Model

Of the CRAY T3E's 512 available PEs only 16 were required for the simulations presented here. The

model consists of three regions (Figure 4). A population of 20736 spike-producing elements represent

the dentate gyrus. Compartmental representations of 2592 pyramidal neurons and 144 interneurons

represent the CA3 region. The CA1 region is twice the size of CA3 containing 5184 pyramidal and

288 inhibitory interneuron cells.

Synaptic interactions are modeled using a generalized alpha-function. Principle connections include

sparse projections from the granule cells to CA3 pyramidal and interneurons, sparse, fast, recurrent

excitatory connections within the CA3 region, di�use fast feedback inhibitory and recurrent inhibitory

connections with a slower time-course representing GABAB inhibition and Scha�er collaterals that

project from CA3 pyramidal to CA1 pyramidal cells. Axonal delays were modeled with a realistic

cable velocity of 0.67 meters per second. A narrow Gaussian variability of axonal delays was used to

avoid network artifacts. Both types of CA3 cells receive feed forward excitation via sparse connections

from the dentate gyrus spiking input elements. However, this 'mossy �ber' input does not yet account

for non-associative LTP seen in these synapses. A standard Hebbian algorithm updates synaptic

e�cacy of the associative pyramidal connections. Contact probability diminishes with distance in

a series of concentric ellipsoids (Figure 5A) and the processor workload is distributed in a design

that biases output targets to remain on the originating processor and is also more accurate than



58 Wide-band spectral power uctuations. . .

Figure 2: Schematic of simulated compartmental cells. A) Minimally branched dendritic compart-

ments of the pyramidal cell contain various ionic membrane channels and active synaptic connections

from other cells. The cell soma produces spike events when it reaches an electrical threshold. Spike

events are passed along axonal lines to other cells where the spike event produces a depolarization of

the target cell. B) The inhibitory interneurons are single compartment models with ionic membrane

channels and active synaptic connections to and from other cells.

a completely distributed connectivity scheme (Figure 4 and Figure 5B). This design reduces inter-

processor communication and optimizes the speed of simulation.

2.4 Simulation Conditions

Input to the neural network model was delivered through the layer of dentate spike generators. Ran-

dom spatial and temporal activation of this region was altered from 0 to 100% where a value of 3%

indicates that a random subset containing 3% of the total population of dentate spike generators were

activated with zero auto-correlation in the dentate spike trains. Given that physiological levels of

dentate activity are probably maximal at relatively low percentages, 1% increments were used from

0 to 10% and increasingly larger increments from 12 to 100% activation. In all, 19 simulations were

performed with levels of dentate activation at: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40, 60,

80 and 100%. Each simulation was allowed to run for 520 ms. This translated into approximately 2

hours of real time on the CRAY T3E.
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Figure 3: Voltage waveform behavior of single cells. Simulated membrane potentials of a pyramidal

cell are shown in red and an inhibitory interneuron in blue. The inset shows a single pyramidal burst

event. The time courses and refractory periods of individual cells are a critical factor contributing to

the networks intrinsic resonance frequencies.

2.5 Data Collection and Analysis

Spike data was collected from all CA1 and CA3 pyramidal cells and interneurons. Simulated electrodes

produced �eld potentials that sampled activity from pyramidal cells in the CA3 region using current

sources and their distance from the electrode site to calculate the �eld. If one assumes that the

medium surrounding neurons is of homogeneous resistivity and has no capacitance, then the �eld

potential generated by a compartmental model can be calculated from the following equation:

F =
1

4�s

nX
i=1

Imi

Ri

(see [11])

where F is the �eld potential in volts, s is conductivity in 
�1m�1), Imi
is the transmembrane

current (Amperes) across the ith neural compartment, and Ri is the distance from the ith neural

compartment to the recording electrode (i.e. the simulated electrode). Data analysis was performed

on an SGI workstation using the S-Plus (Mathsoft). statistical language. Computation of spectral

power was performed on 500 ms epochs of simulated �eld potential. Each epoch was analyzed using

an un-normalized discrete Fourier transform. The 19 simulations yielded 76 power measurements for



60 Wide-band spectral power uctuations. . .

Figure 4: Network diagram of the model.

Input to CA3 is entirely mediated through

spike generators in the dentate. Each re-

gion is simulated by multiple PEs on the

CRAY T3E. In this example of the network

connectivity the area simulated by two PEs

are marked as `8' and `0'. Because area 8

of the dentate projects primarily to area 8

of the CA3 and area 8 of the CA3 projects

primarily to area 8 of the CA1 inter-PE

communication is reduced and the simula-

tion speed is increased.

4 distinct frequency ranges. The frequency bands examined were low (3{6 Hz), alpha (7{12 Hz), beta

(13{24 Hz) and gamma (25{45 Hz). Resulting power values were normalized to a percentage of the

maximal obtained power measure.

3 Results

The percentage of cells that �red and the number of active cells producing single versus multiple spikes

varied with the level of stimulus intensity. As a general trend, increasing the level of stimulation elicited

an increase in the percentage of active CA3 pyramidal cells. Due to feed forward inhibition from the

CA3 and dentate to CA1 interneurons increased stimulus levels resulted in fewer CA1 pyramidal cell

spikes. Figure 6 illustrates spike activity over time for two simulation conditions (1% and 10% input).

A large early activation or impulse response occurred in many CA3 cells to the higher stimulus

conditions centered at around 120ms. Cells are displayed in an arbitrary numerical order and the

spatial organization of the model is not preserved in Figure 6. In contrast, the longitudinal and

transverse axes of the model are preserved in Figure 7. This �gure shows the total number of spikes

produced by any given cell and its appropriately arranged neighbors for the duration of the simulation

in the 1% and 10% input conditions.

Power values were derived from simulated CA3 �eld potentials and were sensitive to the level

of stimulus intensity. The majority of signal power occurred in the low frequency band and was

maximal at an input level of 1%. Maximal alpha power occurred at an input level of 15% and was

approximately 1/3 the amplitude of the maximal low frequency power. Maximal beta and gamma

power occurred at input levels of 9% and 10% and were 0.1% and 0.025% of maximal low frequency

power respectively. Power in all frequency bands was depressed relative to maximal values in response

to stimulus conditions at and above 20% (Figure 8).
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Figure 5: Diagrams of the pyramidal connectivity scheme. A) The probability of synaptic connection

between two cells decreases with distance. B) The model is separated into nodes where a single PE is

responsible for all simulation and message passing to and from a single node. Pyramidal connections

within and between nodes are made within concentric ellipsoidal annuli. Inhibitory interneurons make

simpler, more global connections with a higher probability of connectivity.

4 Conclusion

A common trait that is shared among a wide range of complex systems is the tendency to resonate.

Many structures, due simply to the nature of their composition, are prone to oscillate at certain

frequencies while other frequencies are damped out. In the �eld of engineering resonance can often have

dangerous side e�ects such as collapsing bridges and exploding turbine generators. Much e�ort has

gone into determining the oscillatory characteristics of neural systems. Do network oscillations occur as

a property of individual neurons that oscillate intrinsically, or is it only through synaptic interactions

between groups of cells (that individually would not oscillate) do oscillations emerge? While the

answer to this question depends on the group of cells that one is studying, inter-neuronal feedback

is considered the basis for cortical oscillations seen in the EEG rather than intrinsic autonomous

oscillations of single cells [6, 14].

The input to the computational simulation was random with zero auto-correlation in the spike

trains, as evidenced by the spatially pattern-less activity in Figure 7. However, vague evidence of

rhythmic activity can be seen in Figure 6. This disposition to oscillate is born out in the spectral

power measurements. Therefore, changes in the spectral power can be attributed to activation of
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Figure 6: Spike activity over time for two simulation conditions. From top to bottom the percentage

of maximal stimulation is 1% and 10%. From left to right spike events from each region are CA3

pyramidals, CA3 interneurons, CA1 pyramidals and CA1 interneurons. An early hypersynchronous

impulse response in the CA3 pyramidal spike activity is apparent in the 10% stimulus conditions

centered at about 120 ms.

intrinsic resonant frequencies. The most striking of these is in the low frequency and is highly active in

response to the lowest stimulus condition of 1%. Above this level of stimulation low frequency power

is greatly diminished and appears not to be inuenced in any great measure by further increasing

stimulus intensity.

Higher frequency components show strikingly di�erent properties. From 7{45 Hz power increases

with stimulus intensity in multiple frequency bands. This trend peaks at around 9% to 15% of the

maximal stimulus intensity. Above this level of stimulation, power from 7{45 Hz is greatly diminished.

This is, in a way, reassuring given that simulations that activate over 20% of the input layer in

a period of 500 ms are not physiologically relevant, except perhaps under pathological conditions.

These results suggest that a simple network of simulated cells is capable of producing changes in

the spectral characteristics of its �eld potentials. Similar changes have been observed in the spectral

response of real neural systems from intracranial EEG recordings acquired in the medial temporal

lobe of human epileptic subjects [9].

Future simulations will be larger in order to attain a more realistic sparseness of connectivity.

Results presented here were obtained from simulations using only 16 PEs on the CRAY T3E. Despite

the potential to scale up the model to take advantage of all 512 PEs available on the T3E, increasing

the size of the model causes an exponential increase in memory requirements and simulations beyond
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Figure 7: Spatial organization of cells and spikes from the same data presented in �gure 7. The

percentage of CA3 pyramidal cells that produce spikes increases from 8% to 31% respective to the

increasing stimulus conditions (1% and 10% maximal stimulus). The number of CA1 pyramidal cells

that produced spikes decreased with increasing stimulus conditions from 1, to 0.2%. Both CA3 and

CA1 interneuron populations increased the number of cells that produced spikes with the increasing

stimulus condition.
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Figure 8: Event related spectral power results from 19 simulations where stimulus intensity was

varied between 0 and 100%. Most power was contained in the low (3{6 Hz) frequency band. Higher

frequencies (7{45 Hz) showed a wide-band sensitivity to stimulus intensity from 0 to 15%. Above this

the power in all frequencies is largely diminished.
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64 PEs quickly run out of available memory. In its current form the model has been run on as many

as 64 PEs. However, these large simulations are time costly and have not been run enough to produce

reliable results.

While some form of associative synaptic alteration lends to the realism of the model, in short

simulations the changes of synaptic weights are probably negligible from the perspective of �eld

potentials. Moreover, the computation of the Hebbian algorithm at every pyramidal synapse slows

down the simulation. The next generation of this model will be tested with and without the Hebbian

plasticity that was incorporated here. Longer simulations should be attempted to stabilize the network

after the impulse response and also to see if exclusion of the Hebbian synapses has any impact on

network dynamics.

The levels of stimulus were largely unrealistic and rather than cover a full range of 0 to 100%,

future simulations will focus on a more realistic stimulus range of 0 to 6%. This will allow us to use

smaller percentage steps between simulations and should yield a more realistic level of CA activity.

Field potentials will be collected from the CA1 in addition to the CA3 in the next simulations to allow

for comparison between the activity in these anatomically distinct regions. The spectral response of

the CA3 region to the random input suggests that intrinsic resonance features of the CA3 are capable

of reorganizing white noise activity into a more structured spectral landscape. It is possible, since

CA1 is a major projection target for CA3, that �eld potentials have even greater spectral structure

and sensitivity in the CA1 region.

Finally, although the hippocampus is a simpli�ed cortical structure, observations here are generally

applicable to neocortex. The human CA3 may contain as many as 3 million pyramidal cells with twice

as many in the CA1 region [2]. Furthermore, the hippocampus contains a far more complex geometrical

structure and synaptic connectivity than is simulated here. At best our model can be viewed either as

a sparse sample of the hippocampal formation or a small percentage of the hippocampal formation.

A properly scaled network model may reveal wide-band oscillatory patterns that would otherwise not

appear in the current model.
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Abstract

In this paper, we propose an improved ant colony model in which the foraging behavior of ants

can be observed on a macro-scale as a result of micro-scale interacting behaviors among many
individual ants. Simulation results of the new model have shown that the system changes its
foraging behavior and selects the appropriate foraging strategy according to the food-supply rate.

The mechanism for changing the foraging strategy is explained.

1 Introduction

In a previous paper [1], we proposed a model for observing the foraging behavior of an ant colony

composed of many ants whose sensitivity to stimuli was limited due to the small area surrounding

them. With this model, when the ants are collecting food from sites outside of their nest, they behave

based on the following rules.

An ant looking for food (i.e., in a searching task) walks randomly until it �nds a food

site or detects recruitment pheromone signal [2]. If it �nds a food site, it changes its task

to a carrying task. An ant involved in the carrying task retrieves a bit of food straight to

its nest while laying recruitment pheromone on the ground. After carrying the food to the

nest, it returns to the searching task. The laid recruitment pheromone gradually di�uses

over a wide area. If other ants involved in the searching task detect this pheromone signal,

they immediately change their task to the recruited task. Ants involved in the recruited

task are attracted to the pheromone, and follow the pheromone's trail to the food site.

After �nding the food site, they change their task to the carrying task.

We performed a simulation of the above-described model. We observed a recruitment competition

process among food sites; the process resulted in over-concentrated recruitment at a single site [1], [3].

During the competition, most of ants in the colony were assigned to the carrying or recruited tasks.

This resulted in fewer ants involved in the searching task localized around the nest.

We suppose that ants were desensitized to the pheromone, in order to circumvent such an unwanted

assignment.

Desensitization Supposition

When an ant perceives an over-concentration of recruitment around itself, it becomes

desensitized to the recruitment pheromone for a certain period.

To incorporate this supposition into the model, we have established a rule stating that when an ant

perceives a strong pheromone signal, it becomes desensitized. A simulation of the model was performed

with this rule. We observed that when simulated with the appropriate parameter sets [1], the system

organizes a stable, distributed recruitment at several food sites, and a concentrated recruitment at a

single site. According to this rule, the system works to keep the strength of an organized pheromone

pattern as constant as possible, and not to optimize its foraging. This is because the perception of

over-concentration is determined by the presence of strong pheromone signal, not by food.
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Figure 1: Mode transition rule of the desensitization model in this research.

In this paper, we changed the rule of desensitization to improve the foraging e�ciency according

to the food supply rate. The new rule states that when an ant misses food at a food site, it becomes

desensitized. Under this rule, after the ants eat up a food site, they become able to search for new

sites through pheromone signals. The construction of the model is given in chapter 2. Simulations of

the model were made under di�erent food-supply conditions. The results of the simulations showed

that the system organized di�erent recruitment patterns in response to the food-supply rate, that

are corresponding to the change in foraging strategies. These results are stated in Chapter 3. In

chapter 4, the mechanism responsible for organizing the patterns and changing the foraging strategies

is explained.

2 Model

2.1 Behavior of an Ant

In this revised desensitization model, the behavior of ants is determined to increase the foraging

e�ciency (i.e., amount of food collected by the colony). Ants change their behavior according to local

situation around them, de�ned as below (illustrated in Fig. 1).

Searching task An ant in the search mode walks randomly. If it obtains or misses food at a food site,

it changes its mode to the carry or the return mode, respectively. When it detects a pheromone

signal (see 2.2), it changes its mode to the attracted mode.

Recruited task An ant in the attracted mode goes toward stronger pheromone. If it �nds a pheromone

trail, it changes its mode to the trace mode. If it misses a pheromone signal, it returns to the

search mode.

An ant in the trace mode follows the pheromone trail toward the corresponding food site. If it

obtains or misses food at the food site, it changes its mode to the carry or the return mode,

respectively. If it misses the trail, it returns to the search mode.

Carrying task An ant in the carry mode goes toward its nest with food, while laying recruitment

pheromone on the ground. After carrying the food to its nest, it returns to the search mode.

Desensitization An ant in the return mode goes toward its nest without laying pheromone. After

it reaches its nest, it changes its mode to the wander mode.
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Active Trail
Attracting Zone

P(x, y, z)  < Pthr

Evaporation
Diffusion

Nest Food site

Figure 2: Signal of recruitment pheromone laid by an ant.

An ant in wander mode walks randomly without perceiving any stimulus. After a desensitization

period, it returns to the search mode.

2.2 Behavior of Recruitment Pheromone

Recruitment pheromone laid on the ground gradually di�uses over a wider area. This di�usion is

formulated as follows;

(d=dt+ vap)T (x; y) = 0 Evaporation: (1)

(d=dt� difr)P (x; y; z) =

�
vapT (x; y) (z = 0)

0 (z > 0)
Di�usion: (2)

In these di�erential equations, P (x; y; z) denotes the density of evaporated pheromone in the air,

and T (x; y) denotes the strength of the pheromone trail on the ground. The region where P (x; y; 0) �
Pthr is de�ned as an attracting zone, and the region where T (x; y) � Tthr is de�ned as an active trail,

as shown in Fig. 2.

2.3 Parameter Settings

The simulated system in this paper has a nest at the center of the �eld and four food sites surrounding

the nest. At every food site, a certain quantity of food is supplied per unit time. The other important

parameters are listed below:

� The expanse of the simulated space covers 0 � x < 100�x; 0 � y < 100�y, and 0 � z < 3�z.

For pheromone di�usion, the ground (z = 0) is a reecting boundary and the other boundaries

are absorbing boundaries.

� The evaporation and di�usion factors are given as vap = 0:15�t and dif = 0:42(�x2=�t).

These factors determine the time constant of the trail evaporation and the e�ective range of the

pheromone di�usion. Pthr and Tthr, the minimum perceivable pheromone and trail, are set so

that the pheromone signal laid by an ant fades out after a few steps.

� The desensitization period is determined as 100 steps, that is long enough for wander mode ants

to spread out over the �eld. The system is simulated over 2000 steps, to converge to a near

equilibrium state. An ant moves within two grids in one step. The length of a step and that of

a grid are �t = O(1 � 10sec) and �x = �y = �z = O(0:01 � 0:1m).

3 Simulation Results

Simulation results showed that the system organizes the following two types of recruitment patterns,

in response to the food supply rate.
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Figure 3: Concentrated recruitment to a single site.

Fourteen food units are supplied per step at every

site.

Case I: When the food supply is su�cient (food supply � 7 units per step) Concentrated

recruitment to a single food site is organized, as shown in Fig. 3. Most of the ants are assigned

to the carrying and recruited tasks, and fewer ants are assigned to the searching task. The ratio of

desensitized ants (i.e., ants in the return and wander modes) is relatively small, as shown in Fig. 5.

For a larger food supply, the ratio of desensitized ants is smaller. When food supply � thirteen units

per step, no ant becomes desensitized because food supply at a single site exceeds maximum amount

of foods collected by the colony per step.

Case II: When the food supply is insu�cient (food supply � 6 units per step) Stable

distributed recruitment to several food sites is organized, as shown in Fig. 4. Ants in the colony are

assigned to the searching task, as well as to the carrying and recruited tasks. The ratio of desensitized

ants is relatively large. For a smaller food supply, both the ratio of desensitized ants and the number

of food sites at which ants are recruited are larger, as shown in Fig. 5. In this case, the amount of

food collected by the colony per step is larger than the food supply at a single site. When food supply

rate is between three to six units per step, average collected foods, average rate of each mode ants are

almost constant. With food supply < two units per step, ants eat up all supplied foods, and rate of

desensitized ants is large.

From the viewpoint of mathematical biology, the system autonomously changes its foraging strat-

egy in response to the food supply, to increase the food-collecting e�ciency. When the food supply is

su�cient (case I), most ants go and return between a single food site and their nest, without wasting

their time on random-walking. When the food supply is insu�cient (case II), however a wide disper-

sion of many ants in the wander mode maintains recruitment at several food sites, from which the

colony carries food.
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Figure 4: Distributed recruitment to several sites.

Four food units are supplied per step at every site.

4 Mechanism for Changing Foraging Strategies

4.1 General Explanation of the Mechanism

The mechanism responsible for controlling the changes in recruitment patterns and foraging strategies

can be explained as follows. In a model without desensitization supposition, severe recruitment com-

petition has been observed between food sites for search mode ants around the nest (details will be

explained in 4.2), even with small food-supply rate. With the new desensitization rule, desensitization

is induced to distribute search mode ants over the �eld against strong pheromone signals. As a result,

wander mode ants spread over the �eld. After the desensitization period, these wander mode ants

return to the search mode and are recruited to several food sites (details will be explained in 4.3).

This interferes with the recruitment competition process, and causes stable distributed recruitment

to several food sites.

The changes in organized patterns and foraging strategies are determined by the ratio of wander

mode ants a�ecting the recruitment competition process. When the food supply is insu�cient, the

ratio is large enough to suppress the competition process, and when the food supply is su�cient, the

ratio is too small to interfere with the process.

4.2 Explanation of Recruit Competition Process

At �rst, we consider the case of no desensitized ants, to explain the mechanism for the recruitment

competition process (as illustrated in Figs. 6-1 and 6-2). In this section, the model is assumed to

have only two food sites, to simplify the explanation.

In Fig. 6-1, S denotes the distribution of search mode ants who have just changed their mode from

carry mode. S concentrate around the nest as illustrated in Fig. 6-1. The nest is located at (0; 0),

and the ends of two trails are located at (�h; 0). The intersections between S and the two attracting

zones at time i are de�ned as S1(i) and S2(i) where S1(i) + S2(i) = 1. x(i) is de�ned as the drift of

the boundary between S1(i) and S2(i).

T1(i + 1) and T2(i + 1), the strength of the trail to food site 1 and that to site 2 after a certain

period of time, grow proportional to N1(i) and N2(i), i.e., numbers of ants recruited to both sites.
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N1(i) and N2(i) are proportional to S1(i) and S2(i). Then, we obtain the following equation.

T1(i+ 1)=T2(i+ 1) = S1(i)=S2(i) (3)

Let u(i) denote S1(i)=S2(i). S1(i) and S2(i) are determined as 1�S(x(i)) and S(x(i)). Then, u(i) is
determined by the following equation.

u(i) =
S1(i)

S2(i)
=

1

S(x(i))
� 1 (4)

Let P (x) denote the pheromone density at the boundary. P (r) is proportional to f(r) (r: distance

from the pheromone trail, f(r): a positive, monotonically decreasing function of r). Then, P (x) is

determined as follows;

P (x(i+ 1)) / T1(i+ 1)f(h� x(i+ 1)) = T2(i+ 1)f(h+ x(i+ 1))

) u(i) = f(h+ x(i+ 1))=f(h� x(i+ 1)) (5)

u =
�
1=S(x)

� � 1 and u = f(h + x)=f(h � x) are drawn graphically in Fig. 6-2. As S(�h) = 0 and

S(h)+1, the curves cross as shown. This �gure indicates that x is �nally driven to �h and u is �nally
driven to 0 or 1. This means that the result is concentrated recruitment to either site.

4.3 Explanation of Distributed Recruit in Desensitized Model

Next, we consider the other case that all search mode ants return from desensitization (illustrated

in Fig. 6-3), to explain how desensitization supposition enables stable distributed recruitment. In
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Fig. 6-3, S denotes the distribution of search mode ants who have just changed their mode from the

wander mode. S is non-zero over a wide area of the �eld. S1(i) and S2(i) denote the intersections

between S and the two attracting zones at time i. In this case, there are two important di�erences

from the previous case.

� S1(i) and S2(i) cannot cover the total S (S1(i) + S2(i) < 1). That is, many search mode ants

are located outside of the attracting zones; gradually, they become trapped in the attracting

zones after random-walking.

� The expanse of border between S1(i) and S2(i) is too small when compared with S1(i) or S2(i).

Accordingly, the interference between the attracting zones is negligible when considering the

growing process of the attracting zones.

In this case, each attracting zone grows independently until reaching the upper limit determined by

the number of search mode ants returned from desensitization. This results in distributed recruitment

to all sites equally.
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5 Discussion

In this paper, the model is simulated under static food-supply conditions. This model will show better

foraging behavior when simulated in dynamic food-supply condition, where search of new food sites

is essential to foraging [4].

In this model, desensitization induces negative feedback from macro-scale foraging behavior of

the system to micro-scale ants behavior. Desensitization induces noise into the system on demand,

in order to control system's behavior properly. Similar mechanism for changing foraging strategies

according to noise in ants' behaviors was proposed [5]. This system can escape from local minimum

(overconcentrated state) by use of noise (desensitized ants). Some stochastic process may allow us to

control of such a nonlinear distributed system.

6 Conclusion

In conclusion, an improved ant colony model that can increase the e�ciency of foraging was proposed.

In this model, the system shows change in recruitment patterns corresponding to change of foraging

strategies, according to the food supply rate, and maintains a high food collecting e�ciency.
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Abstract

Many important aspects of the function of the cerebral cortex can be captured in a two
dimensional lattice model. From this analogy, the change from the awake state to the unconscious

state can be understood as a form of order/disorder phase transition. If this is so, there should
exist an order-parameter that has zero value when the cortex is disordered (the anaesthetic state),
and which rapidly climbs to an arbitrary positive value when the cortex becomes ordered (the
awake state). Although the `spatially-meaned soma potential' v of the cortex, relative to its

unconscious state value vo, can be considered to be the order-parameter, it is not possible to
measure the mean soma potential directly. However, uctuations in the soma potential give rise
to the time-varying EEG signal v(t) which is easily measured.

In this paper we hypothesise that the �rst time-derivative of these uctuations dv=dt is suf-
�ciently strongly linked to the mean soma potential that RMS or absolute values of dv=dt can
serve as a proxy order-parameter for the cortex.

One-dimensional and two-dimensional cellular automaton (CA) simulations were run to test
this hypothesis. The 1-D CAs showed an increase in (dv=dt)abs for more complex CAs (as de�ned
by Wolfram's classi�cation). In the 2-D simulations there was a strong linear correlation between

(dv=dt)rms and v (having correlation coe�cient r = 0:92). The EEG signal was recorded in 23
patients during induction of general anaesthesia. Overall the (dv=dt)rms value decreased by 70%
when comparing the awake values with those from the anaesthetised state. We conclude that

the (dv=dt) measure shows promise as an easily extracted proxy order-parameter, and that the
transition from the awake state to a state of general anaesthesia is associated with a decrease in
(dv=dt)rms consistent with the behaviour expected of an order-parameter.

1 Origin of the Electroencephalograph (EEG) Signal

The cerebral cortex has been modelled widely as a two-dimensional lattice. Its function depends on

internal interactions between neurons (or neuronal assemblies), and input from the primitive brain.

Generally, the neuronal interactions occur at synapses according to the following sequence:

(i) Action potential (spike) in the pre-synaptic neuron, results in

(ii) Neurotransmitter release, which causes

(iii) Alteration of post-synaptic potential (PSP). Each perturbation is followed by an exponential

return of the post-synaptic membrane to resting membrane potential.

The PSPs from an area of cortical pyramidal cells can be spatially summed to give the mean

soma potential. The potentials from about 1 to 5 cm2 of cortex can be recorded as the surface EEG

signal. In practice only the alternating component of the mean soma potential can be captured in

the EEG because of the problems associated with de�ning a suitable zero-voltage reference point

which is reproducible, unambiguous, and insensitive to DC artifacts from muscle-voltages and other

non-cortical sources.

The main question that this paper seeks to answer is: What features of the EEG signal best reect

the e�ectiveness of information ow in the underlying cerebral cortex? We have assumed that, in the
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conscious state, there is accurate and unimpeded information ow between cortical neurons; whereas

when a subject is unconscious (or anaesthetised), there is some impairment of this information ow.

It would seem plausible that the transition from consciousness to unconsciousness may be analogous

to a phase transition from order to disorder. Thus, a graphic metaphor for the induction of general

anaesthesia may be that of melting jelly. If the ordered/disordered phase transition is a realistic

picture of the cortical alterations that occur with loss of consciousness, then there should exist an

order parameter. There is theoretical justi�cation to postulate that the mean soma potential is the

appropriate order parameter for cerebral cortical function. There is also some indirect experimental

evidence that is consistent with this hypothesis. It is known from recordings from individual neurons[2]

and PET studies[1], that in the conscious state there is a high mean spike rate and a high neuronal

metabolic rate. In contrast, in the anaesthetic state there is a low spike rate and a much reduced

metabolic rate. If it were possible to measure the mean soma potential directly, we would be able to

identify and track the conscious-to-unconscious transition. However, as stated above, it is not possible

to extract the absolute value of the mean soma potential, but only its alternating component: in the

form of the EEG signal. Therefore, it is necessary to develop an observable quantity that is highly

correlated with the mean soma potential | to serve as an order-parameter by proxy.

For the time-varying EEG voltage signal v(t), we postulate that the root mean-square (RMS)

value of the �rst derivative of the EEG, (dv=dt)rms, should be a good candidate, since this quantity,

when squared, gives a measure of the energy contained in the rate-of-change of the EEG voltage.

Intuitively, when many time-coincident PSP perturbations are summed, there will be a steep change

in the EEG signal (i.e., large dv=dt) | unless there are equal numbers of inhibitory and excitatory

perturbations. Because large numbers of activated neurons are required to produce large numbers of

PSP perturbative events, we may posit some sort of positive correlation between (dv=dt)rms and the

mean soma potential. The actual form of the function which relates these two quantities is unknown,

so we have attempted to examine various data to see if we can uncover an empirical relationship.

In this paper we report on the use of the time-derivative statistic: �rstly in cellular automaton

(CA) simulations, and secondly, on EEG data from patients undergoing general anaesthesia.

2 Cellular Automaton Simulations

The CA model is a way of investigating, in an extremely simpli�ed way, the behaviours of extended

systems of interacting elements.

2.1 One-dimensional simulations

The initial investigations were designed to establish whether dv=dt, interpreted as `rate of state change',

has as any correlation with the complexity in the signal generated by a CA. On a small computer we

set up various one-dimensional deterministic CAs (k = 2 states, range r = 1) consisting of 200 cells

with periodic boundaries. The CAs were classi�ed according to Wolfram[3]:

Class Spatial Description Pattern Evolution Final State

1 spatially homogeneous disappears �xed

2 periodic structures �xed �nite size regional

3 aperiodic grows inde�nitely increasing size

4 propagating structures grows and contracts irregular

The essential distinction between classes is that in classes 1 and 2 information propagates a �xed

distance, whereas in classes 3 and 4 information can propagate an in�nite distance (at a �xed speed

for class 3).

The simulations were coded in the C++ language. Each CA was allowed to evolve from a random

initial pattern for a period of 200 time steps. We counted the number of cells which ipped state at



76 The First Time-Derivative of the EEG

1 2 3 4
Wolfram CA Class

5

15

25

(d
v/

dt
)a

bs

Figure 1: Box plots of the (dv=dt)abs for di�erent classes of one-dimensional CA. The output from

more complex CAs (classes 3 and 4) exhibit greatly increased (dv=dt)abs when compared with those

from classes 1 and 2.

each step, and recorded the absolute value of cell `activity' per time step:�
dv

dt

�
abs

=
1

N�t

NX
i=1

jvi � vi�1j

where N = 200 steps, vi is the number of active cells at time-step i, and �t = 1 represents the cycle

time.

As shown in �g. 1, the (dv=dt)abs values are much greater for classes 3 and 4 than for classes 1

and 2. Therefore, a broad conclusion would be that, for one-dimensional CAs, a high (dv=dt)abs value

is associated with enhanced percolation of information across and through a system of interacting

units. Conversely, a low (dv=dt)abs value would be associated with systems in which movement of

information is constrained.

2.2 Two-dimensional simulation

This conclusion is further supported by the results from a 2-dimensional CA | which more closely

simulates cortical function. Using a square lattice and a von Neumann neighbourhood, each cell can

take on three states (quiescent, active, and refractory). At each time step an active cell can activate

quiescent neighbours randomly according to a prede�ned `bond' probability Pb. The active cell then

moves to a refractory state. This model is very similar to the well-known `forest-�re' model. The

output `voltage' v of the system is de�ned as the number of the active cells at each time step, thus v

is analogous to the mean soma potential v of an area of real cerebral cortex. It is generally accepted

that the mean soma potential, relative to the unconscious state value, is the order parameter for the

two-dimensional CA model.

The model was implemented in C++ using a 20�20 lattice. The array was continuously stimulated
by activating a single cell at a randomly selected site at each time step. After allowing 200 time steps

to eliminate any start-up transients, twenty runs of 200 time steps were performed and the average

value for the (dv=dt)abs cell activity was recorded. This was repeated for a range of values for Pb (0.1

to 0.9).

Figure 2a shows an abrupt change (clear transition) in the mean activation v of the system when

Pb is reduced below about 0.5. Figure 2b demonstrates that this change in v is closely mirrored by
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Figure 2: Results of the two-dimensional CA simulations at di�erent values of bond probability (Pb).

For each value of Pb, the box plot shows mean activation v(t) (�g 2a), and rate of state change

(dv=dt)abs (�g 2b). High values of Pb correspond to the awake state of the cortex, while low values

correspond to the unconscious state. Both the v(t) and (dv=dt)abs abruptly decrease as Pb decreases

below a critical point.

a corresponding change in the (dv=dt)abs statistic. These data gave a good linear �t (correlation

coe�cient r = 0:92) between `rate of state change' and `mean activation level':�
dv

dt

�
abs

= 1:7 + 0:09v

3 Changes in EEG during Induction of Anaesthesia

Obviously the details of the interactions of billions of neurons in a real cerebral cortex are vastly more

complex than the 2-dimensional CA model, but to what extent has the essence been captured by the

model? In order to try an answer this question we have analysed EEG data collected from 23 patients

during induction of general anaesthesia.

The study was approved by the Waikato Ethics Committee and informed consent was obtained

from adult patients prior to having minor surgery under general anaesthesia. The EEG data were

collected using the ASPECT A-1000 monitor (Aspect Medical Systems, Natick, MA). While preparing

for anaesthesia, �ve silver/silver chloride EEG pads (Zipprep, Aspect Medical Systems, USA) were

attached to the patient's forehead according to a standard montage: one as the ground (Fpz) and the

other four as two separate bipolar channels (F7-T7, F8-T8) over the left and right prefrontal cortex.

The low- and high-frequency �lters were set to 0.45 Hz and 45 Hz respectively. Data from the EEG

monitor were continuously transferred to an IBM computer for o�-line analysis. The progression

from the conscious state to a fully anaesthetised state was de�ned by noting the speci�c times of:

(1) starting injection (start); (2) dropping a 50-ml syringe which was held between the thumb and

�ngertips (syringe drop); (3) insertion of laryngeal mask or endotracheal tube (tube); and (4) initial

incision (incision).

As described above, the mean soma potential is not directly observable from the EEG record, so we

attempt to extract a measure of the rate of cortical state change by computing the RMS value of the

�rst time derivative of the EEG voltage. Since the EEG signal can be pictured as a sum of sinusoids,

computing the derivative in the time domain is equivalent to frequency-scaling the amplitude of each

frequency component in the Fourier domain. Thus (dv=dt)rms can either be computed directly from
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the EEG time series, �
dv

dt

�
rms

=

"
1

N � 1

N�1X
i=1

�
vi+1 � vi

�t

�2
# 1

2

or indirectly from the frequency-scaled power spectrum:

�
dv

dt

�
rms

=
1p
2N

24N=2X
k=0

a2k!
2
k

35
1
2

where !k = k(2�=N�t) is the kth frequency harmonic, and ak is the amplitude of that component.

The RMS averages were computed for successive 1-sec epochs. The sampling rate was 256 samples/sec

at a 14-bit resolution, giving �t = 1=256 s, and N = 256. The two methods are equivalent, though

the �rst (time-domain) method runs faster since no Fourier transformation is required. The second

method is more convenient if analysis of speci�c frequency components is required.

Using these techniques our results showed a large decrease in (dv=dt)rms during the transition from

the awake state to the anaesthetised state in almost all patients. An example is shown in �gure 3.

This transition reversed on awakening.

For the 23 patients, the mean value for (dv=dt)rms showed a signi�cant decrease (p = 0:007, paired

t{test) to 73% of the awake value at the point where the patient became asleep (syringe drop). This

continued decreasing as the patient was intubated (tube) and up until the start of surgery (incision)

by which time (dv=dt)rms had dropped to 30% of the awake value. Although these results show that

there are statistically signi�cant changes in the mean values for the whole group, there was marked

variation in the patterns for some individuals. For example, it was common in the unconscious state

for the (dv=dt)rms statistic to abruptly and momentarily shift from values close to zero to those values

normally associated with being awake every second or so.
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4 Discussion and Conclusions

We have shown that in simple two-dimensional CA models of cortical function, as the inter-cell bonding

probability diminishes the average number of active cells v decreases, as does the magnitude of their

rate of state change, (dv=dt)abs (�gs 2a,b). A similar decrease for the (dv=dt)rms statistic is found when

applied to the EEG voltages for patients as they lose consciousness during the induction of anaesthesia.

However, not surprisingly, the EEG data revealed more complicated patterns in some patients. These

more complicated behaviours are di�cult to interpret in terms of the simple ordered/disordered phase

transition concept. In some cases there seems to be a form of intermittent `switching' between the

awake and unconscious phases. In a few cases there was very little change in the (dv=dt)rms during

loss-of-consciousness. The signi�cance of these aberrant examples is hard to interpret but the following

possibilities should be considered:

{ Was the signal corrupted by equipment noise or muscle-voltage (EMG) artifact?

{ Is the (dv=dt)rms change purely an epiphenomenon?

{ Were the patients never properly asleep?

{ Was there very rapid switching between phases? Should RMS averaging be performed over shorter

time scales?

These questions are the subject of ongoing research. We conclude that:

� RMS-averaged (dv=dt) shows some promise as an easily measured `proxy' order indicator.

� The transition from the awake state to a state of general anaesthesia is associated with a decrease

in (dv=dt)rms. This decrease is qualitatively similar to that found in two-dimensional CA simula-

tions. This change probably reects the suppression of cortex `activation' by anaesthetic agents

and supports the notion that the transition from the awake state to that of general anaesthesia

has features consistent with an ordered/disordered phase transition.
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Abstract

In the original speci�cation of the Ecolab model, spatial variation of the system's variables was
included, with an additional migration operator introduced proportional to the divergence of the

species density. Suitably discretized, the model then consists of a number of cells, each running
the non-spatial Ecolab model, linked together by the migration operator. This paper reports on
the implementation of such a cellular Ecolab.

Originally, it was hoped that computational parallelism might be exploited by providing par-

allel versions of the underlying array operations used. However, it was found that the cost of
the irregular data communication involved in the sparse matrix multiplication destroyed any gain
from parallelism. Thus a Cellular Ecolab o�ers a way of exploiting parallelism, that for certain

situations as superlinear speedup is observed.

As an example of the type of problem addressable by a spatial Ecolab, the species-area rule is

examined, although the results are not good enough at this stage to be de�nitive.

1 Introduction

In a previous paper[17], a model of an evolving Lotka-Volterra ecology called the Ecolab model was

proposed, and has been studied in a number of subsequent papers[13, 12, 15, 14]. The de�ning equation

(with slightly revised notation) is given by:

_n = r � n+ n � �n+  � r2n+ �(r � n) (1)

where n is the species density, r the e�ective reproduction rate (di�erence between the intrinsic birth

and death rates in the absence of competition), � the matrix of interaction terms between species,

 the migration rate and � the mutation operator. All of these quantities (apart from �, which is

a matrix) are vectors of length nsp, the number of species in the ecology. The operator � denotes
elementwise multiplication. The mutation operator returns a vector of dimensionality greater than

nsp, with the �rst nsp elements set to zero | in e�ect expanding the dimensionality of the space, a

key feature of this system. For a more detailed exposition of the various properties of the model, in

particular, the precise form of the mutation operator, the reader is referred to the previous published

papers, as well as the Ecolab Technical Report[16], which are all available from the Ecolab Web Site1.

All previous studies of the Ecolab model have set =0, and made the model independent of space.

In this study, I implement Ecolab on a grid, to examine what e�ect migration has on evolutionary

dynamics. Whilst it is conceptually possible for r, �,  and � to vary spatially, there is a problem

when these values are generated through speciation. A new species comes into existence at one

particular grid location. When an individual of that species migrates to a di�erent grid location, what

are its phenotypic parameters? Presumably completely random values or a well speci�ed functional

applicable to all species is incorrect. Here we might consider that di�erent grid cells might have, for

example, di�erent topographic elevations. However, di�erent species will respond in di�erent ways to

1http://parallel.hpc.unsw.edu.au/rks/ecolab.html
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elevation. Until we have a solution to this problem, we have to study the simpler system where the

phenotypic parameters are constant in space, but n varies.

As an exercise of what sort of biological problem might be tackled by a spatial Ecolab model,

the species-area relationship observed along an archipelago is an interesting one to investigate. The

observed relationship[8] is one of a power law nsp / As, yet there is no known theoretical reason why

this should be. The importance of this rule is that it is often extrapolated to patchy land ecosystems,

such as relating the size of a patch of rainforest to its diversity.

Already there is a complication in this model. May[9] proposed that random Lotka-Volterra webs

would be unstable if

nsp <
1

s2C
(2)

where C is the connectivity, de�ned as the proportion of nonzero elements in �, and s is the interaction

strength, de�ned as the standard deviation of the o�diagonal terms of �, divided by the average of the

diagonal terms. Cohen and Newman[3] showed that May's criteria does not hold for Lotka-Volterra

systems in general, only a smaller class related to the models May studied. However, the inverse

relationship between species number and connectivity does appear to hold[11, 4, 2].

Although May considers stability of the ecosystem, whereas what is really important is the perma-

nence of the system[5], the species number will depend on more factors than area. Keitt[7] examined

the e�ect of \spatialising" random Lotka-Volterra systems on the stability criterion. He initialised an

ensemble of Lotka-Volterra systems in an unstable con�guration, and evolved the systems until no

further extinctions were recorded (so in fact measuring a permanence criterion, rather than a stabil-

ity criterion). He found that equation (2) �tted well the resulting distribution of end points for the

non-spatial version. For a 100� 100 grid, a generalised form of equation (2):

nsp = s�C� (3)

with �, � and  signi�cantly di�erent from the values of May's criterion (-2, -1 and 1 respectively)

although the biggest di�erence was observed with the � values, which were substantially reduced.

So in this study, I again examine how the �, � and  values from (3) vary with grid size. Without

necessarily asserting the correctness of this, I also simulate systems at di�erent grid sizes, starting

from the same nsp, s and C values to see what the total nsp (the size of the union of species from all

grid cells) will be as a function of area.

2 Implementation

The Ecolab modeling system represents the variables n, r etc. as dynamically allocated arrays

density, repro rate etc. As the system size varies, through the introduction of new species, or

extinctions, new data storage is allocated for these variables, and the existing data is copied. To

make the programming task simpler, these data structures are packaged into classes (called array

and iarray (for integers)), that allow these objects to be manipulated in a data parallel fashion.

Each elementary operation of the model is coded as a TCL[10] command. Such commands include

generate, which iterates

_n = r � n+ n � �n;
mutate to add new species to the system, and the new migrate command, which handles migrations

between cells. Additional commands are available to allow visualisation of what is going on in the

model. To run a particular experiment, a TCL script is constructed, which set various parameters for

the model, then executes an event loop, calling the above Ecolab commands.

Introducing a cellular structure to Ecolab required a major rewrite of the code. Each of the arrays

density, repro rate etc. now contain the entire multicellular ecosystem, packed in cell order. The

nsp variable now becomes an array of values, containing the number of species in each cell, and can

be used to determine what values belong to which cell. This allows the generate step, which iterates

to be unchanged.
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In order to keep track of the model's structure in a variety of situations, the model's variables

(the n, r etc) are packaged up in a C++ class called a global. The main Ecolab model variables

can be accessed by means of references which point into the global global's (called global_vars)

data structure. A global does not have many properties, but can be converted into a contiguous

machine independent binary representation that may be saved to a �le for checkpoint/restart, sent

over the network to a client Ecolab program or sent to another processor in the parallel version of

the code. One can also extract the variable corresponding to an Ecolab model variable: for example

g[density] returns the iarray component of g that corresponds to the global density variable. So

global vars[density] is in fact synonymous with density. Coupled with functions that extract or

insert globals corresponding to particular cell ranges (or even a single cell), this allows an easy way

of accessing the model viewed as a single cell. The mutate and migrate algorithms consist of loops

of the cells, with the code then working at the cell view level.

Parallelism also turns out to be relatively easy to implement using the MPI message passing

interface2. Each thread runs a separate copy of the Ecolab executable, which is a TCL interpreter.

The main Ecolab script is executed in the master Ecolab process, the slave threads execute individual

TCL commands as instructed by the master thread. Mostly, this is handled by the PARALLEL directive,

which means run this TCL command on all processors simultaneously. Migration is handled by a

template type operation | boundary cells on the processors are shifted circularly to the neighbouring

processor, which are then used by the get neighbour routine. get neighbour returns a global

containing the neigbour's cell, which can then be used for computing the Laplacian.

It should be pointed out that it is not necessary to have a parallel computer in order to run the

code. All MPI calls are wrapped in #ifdef MPI, so one can selectively link to the MPI library. The

algorithm treats a non-MPI code as though it is running on a single processor. With the MPI calls

included, Ecolab typically runs about 10% slower on a single processor than when the calls are not

included.

An important assertion that the code must satisfy is for the total number of individuals to be

conserved by migration (
P

i ni is constant). Since the migration operator returns a real valued vector,

it needs to be probabilistically converted to the integer valued n. One must ensure that the same

dice roll is used for updating a cell and its neighbour across a cell boundary. To do this, an array

of random numbers corresponding to cell boundaries is generated each time migrate is called, and

distributed to all the processors.

Figure 1 shows the speedup over a single processor for a 30 � 40 grid for a typical Ecolab run.

Note that superlinear speedup is obtained for the np = 2 and np = 4 cases. It is not actually clear

why the np = 3 case performs so poorly.

It should also be noted that the Ecolab cellular structure is more general than geographical rep-

resentation. In an economics model, the cells may correspond to separate sectors of a multisectoral

model. Provided that the model has a slow and a fast time scale, with the fast time scale only

operating within a cell, this cellular structure can be e�ectively used with parallel computers.

3 Simulations

The Ecolab model was run with di�erent initial values of nsp (f10; 20; : : :120g), di�erent initial values
of the connectivity (f2=nsp; 4=nsp; : : : b3nsp=4c=nspg) and interaction strength (the diagonal compo-

nents of � was initialised by a uniform random variate between �1 � 10�3 and �5� 10�4, and the

o�diagonal components to a uniform random variate between �s� 10�4 to s� 10�4, where s took on

the values f1; 3; : : : ; 9g| i.e. interaction strength between 0.1 and 1.0). The other parameters of the

system were kept �xed: n was initialised to 100, r initialised to a uniform random variate between

�0:005 and 0.01, � (mutation rate) uniformly between 0 and 0.1, sp sep 0.1 and  (migration) set

to 0.01. Each set of initial parameters was run as a separate thread for 105 timesteps with controls

provided to limit the number of threads scheduled at any one time.

2http://www.mcs.anl.gov/mpi/index.html
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Figure 1: Speedup curve for Ecolab running on a 30� 40 grid with migration

This range of parameters reasonably �lled the unit cube in (nsp; C; s) space. The �rst 5000

timesteps were discarded to allow the system to settle down to its long time behaviour, then the

values of (nsp; C; s) were recorded each 1000 timesteps. Figures 2 to 4 show these data points, along

with a minimal surface that is �tted to contain these data points. The hypertext version of this

document contains links to VRML3 of these �gures which allow the reader to interactively manipulate

the �gures.

The surfaces �tted are given by equation (3). The surface itself is �tted by minimising the sum of

the volume underneath the curve and the sum of the distances of all points lying above the surface

to the surface itself (the data excess). Clearly, there is a choice as to how much weight to give to

minimising the volume and the minimising the data excess. By visualising the system using AVS4, it

was found that weighting the data excess relative to the volume in the range 0.5 to 5 gave visually

good �ts, outside this range, the �t appeared quite poor. One could also compare the numerically

�tted values against the values predicted by May's criterion 2 for the single cell case. In all the quoted

values for �, � and  in table 1, even weight was given to minimising the surface and the data.

The surface given by (3) is hyperbolic, and the volume bounded by it and the axes planes is in�nite.

In this work, I truncate the surface at some maximum value nmax. Figure 5 shows the connectivity-

strength plane. In region A, the surface is below nmax, and in regions B and C, the surface is clamped

to the value nmax. The locus D is given by s�C� = nmax. The volume under the surface can then

be found by integration, by adding the contributions from the 3 areas A, B and C:

Vol: = 

Z 1

(nmax
 )

1
�

C�

Z 1

�
nmax

C�

� 1
�

s�dsdC

+ nmax

Z 1

(nmax
 )

1
�

�
nmax

C�

� 1
�

dC + nmax

�
nmax



� 1
�

(4)

3http://www.vrml.org
4http://www.avs.com
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Figure 2: Plot of sample data points in (nsp; C; s)

space for the 1 � 1 grid, with the �tted surface

given by (2)

Figure 3: Plot of sample data points in (nsp; C; s)

space for the 8 � 8 grid, with the �tted surface

given by (3), with the �, � and  values shown

in table 1

Grid Size � � 

1� 1 �2:7 �0:98 1.0

2� 2 �1:34 �1:99 0.5

4� 4 �1:68 �1:53 0.5

8� 8 �1:16 �1:2 0.88

16� 16 �1:5 �0:85 1.01

Table 1: Table of �, � and  values for di�erent grid sizes

This formula was then integrated symbolically using GNUCalc5 and converted into C code. Care

was taken of the special cases (when � = 1 or � = 1) as in this case the symbolic integration involved

logarithms, as opposed to powers.

The optimisation was performed using the Hooke algorithm[6, 1], and the results for the di�erent

grid sizes are listed in table 1.

The con�dence in the values presented in table 1 was tested by visualising the data (Figures 2. . . 4)

and varying the �, � and  to see how well the curve �tted the boundary of the observed data. It was

found that � and  were tightly constrained, with errors of no more than about 10%, whereas the �

had a much larger error perhaps of order 40{50%.

Direct comparison with Keitt's work is di�cult, as he worked with a 100� 100 grid, and used a

very di�erent migration scheme. He reported a substantially lowered value of � (order 0.2), whereas

� and  had similar values to that of eq (2). It can be seen from table 1 that as grid sizes increase,

the � and  are tending back to May's values, whereas � is decreasing. Unfortunately, the con�dence

in the measured values is not that great, circumscribing these conclusions. At the present state of

the art, the values are not well enough known in order to predict what the diversity (nsp) does as a

function of grid size, for constant C and s.

As an alternative, a simulation was performed by setting C and s to 1, and looking at the average

5http://www.gnu.org/order/ftp.html
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Figure 4: Plot of sample data points in (nsp; C; s)

space for the 16� 16 grid, with the �tted surface

given by (3), with the �, � and  values shown

in table 1
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Figure 5: Connectivity-Strength Plane. In region

A, Keitt's formula is less than nmax, in region B

and C, the surface is clamped to nmax. The locus

D is given by s�C� = nmax.

diversity values for the entire grid over 50000 timesteps ignoring the �rst 5000, as a function of grid

size. It is expected the the diversity should increase, as more niches open up with the greater number

of cells. The result of this simulation is shown in �gure 6. This was seen, but with a at spot at

intermediate grid sizes. Figure 7 shows the average connectivity and strengths values on the same

run. Curiously enough, the curves are correlated with the diversity curve, not anti-correlated as might

be expected from the hyperbolic nature of eq. (3).

4 Conclusion

This paper describes improvements made to the Ecolab code that allow for geographic variation in the

evolutionary model. This improvement also allows for parallel processing to be exploited for the �rst

time. An initial foray into examining the relationship between diversity and habitat area is described,

but demonstrates that the issue is considerably more subtle than might initially be conceived. There

are a number of theoretical issues that need to resolved before a de�nitive answer is possible.

The migration algorithm used assumes that the phenotypic parameters of a species do not vary in

space. This is an unfortunate restriction, and methods for dealing with propagating novel phenotypic

information through space need to be developed.
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Abstract

Approximate identi�cation of coupled map lattices is considered. The local dynamics is split
into a local function, expanded in Hermite's polynomial series, and a coupling one which is the
convolution product of the neighborhoods by a kernel. The local function �ts the data set (an

image) while the convolution kernel of the coupling function is adjusted to �t a set of some
selected patterns, gathering the so-called \structural information". The structural information to
be considered is shown to be the connected set of the zero-crossings of the Laplacian of the input

image, which is computed by using Gauss kernels. A practical computation of a CML from stone
patterns is shown.

1 Identi�cation of CA and CMLs

Research on cellular automata (CA) is about a couple of decades old as it started, at least o�cially,

approximately at the date of Wolfram's well-known papers [22]. Compared to the analytical study

of global equations, cellular automata provide physicists with a mere bottom-up approach: global

behaviors are generated from local rules and interactions over bounded domains. Generic CA have

been proposed in various �elds (see collective works [3, 8]) and the number of new related applications

is still growing. The key point of this approach is that cellular automata can be e�ciently implemented

and tested: it is therefore an experimental approach in the best meaning of the word.

In brief, a cellular automaton is a discrete spatially-extended dynamical system: it is discrete in

time, space and state space. However, this last feature could turn to be a stumbling block when

matching with real experiments. Coupled map lattices (CMLs) were introduced by Kaneko [10] as

a paradigm for the study of turbulence, convection and other similar problems occurring in physics.

They may be considered as a generalization of CA since they are discrete in time and space but

continuous in state space. Coupled map lattices are well-suited to the study of patterns growing

under the action of repulsive and attractive forces [20], also called a reaction-di�usion process [16] and

remain at the same time mathematically tractable. Despite the increase of their practical generality,

only little attention has been paid to the inverse problem, namely the approximation of a data set; at

the same time, the only works relevant to CA identi�cation are probably [1, 8].

Actually, most of the work being available on CMLs is devoted to their analysis either by using

statistical techniques [2] or by means of formal language theory [8, 9, 12]. One reason for this state of

things is that both CMLs and CA are highly parameter sensitive which makes one wonder about the

possibility of solving the inverse problem. Actually, any valid approximation scheme must answer a

few fundamental questions, in the reverse order of importance:

1. How stable is the approximation with respect to the parameter tuning?

2. How stable is the approximation with respect to the noise of the data set?

3. Is there a one-to-one mapping between the expected approximation and the data set?

4. What information must the approximation converge to?
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The �rst question is relevant to the well-known parameter sensitivity of coupled systems. One

common technique for coping with it is to control the CML Jacobian, which is discussed in section 3:

the system behaves in a chaotic manner as long as it does not approach a �xed point. This chaotic

behavior is an advantage in applications where tuning by hand of the parameters must be forbidden,

as in data encryption applications. Langton's conjecture, which assumes there is a critical parameter

turning on the chaotic behavior [23] has been criticized in many papers [6].

Some hints for answering the second question can be found in Roy and Amritkar's paper [18]. The

authors show that noise does not play a detrimental role by destroying small patterns but, on the

contrary, allows formation of new structures in a mode they call stochastic resonance.

As we shall see below, the initial purpose of this study is certainly not to explain any physical

process but on the converse to force a system to reach a point somewhere in its evolution. Though no

straightforward relationship can be exhibited, the method still performs CML identi�cation since the

system is computed according to structural information; moreover, it is not constrained to accept the

image as a stable point which leaves it full ability to evolve in di�erent directions.

The information being actually caught by the CML has been called \structural information". It

consists of the edges of the initial image, which lie in the connected set of the zero-crossings of the

Laplacian and are computed by using Gauss kernels. This point is discussed in section 4.

The practical problem being addressed in this paper is to compute a general (deterministic) coupled

map lattice which can yield a particular array of values, whose integer truncation can be displayed

as an image. Possible applications fall within image compression, texture analysis and cryptography.

As for CA, interaction domains to be considered are restricted to small neighborhoods around cells

because physically meaningful interactions are limited in range. In the present application, this choice

is still valid since the luminance of a given pixel depends almost only on its neighborhood. Since

no additional information is assumed to be available about the initial array, a Gaussian noise over

the array may be a good and plausible start according to the particular de�nition of the structural

information.

The evolution equation is the sum of a local (site) function and a coupling function. About the site

function, instead of taking the logistic map which has been extensively studied either in chains [5] or

in arrays (e.g. [11] for the analysis of spatial structures in population dynamics) or, again, any other

polynomial function of degree in N or Q [7], we shall try to remain as general as possible in keeping

a power series within a convergence domain. Our approach which makes use of image processing

techniques is rather innovative since the CML is computed straight from the image instead of being

approximated by a CA like in [4]; moreover, there is only one CML for one or several images and its

parameters do not evolve as in [14].

This paper is organized as follows. Section 2 introduces the theoretical work, a complete pre-

sentation of the method being given in section 3. In section 4, a new de�nition of CML structural

information is given and discussed. Experiments from real images are shown in section 5, followed by

the conclusion.

2 CML evolution equation revisited

In the following, a CML is 4-tuple

A = (N;S; L;C; r)

where N is the dimension of the site array, S is the set of sites indexed by f1; 2; � � � ; QgN and L is the

local transition function: R2 ! R2 \attached" to every site. r is the diameter of ball B (according

to metric d in NN { see remark below) whose interior can interact with the behavior of the site at

its center; C is the coupling function which governs that interaction, and thus the interaction of the

whole ball on site x with respect to some measure � is given by:Z
B(x;r)

C(jj x� y jj)dy:
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On discrete lattices, di�erent tessellations and related metrics can be used which lead to di�erent

topological properties. In the following, we consider only linear coupling functions leading to the

evolution equation at site j:

yj(k + 1) = L(yj(k)) + �
X
l6=j

d(l;j)�r

yl(k):

Notwithstanding such an apparent naive de�nition, this system is able to capture very rich and

complex behaviors. When d is the \city-block" (or \Manhattan") distance, an interesting remark is

that the �nite sum in the right member of previous equation can be rewritten as:

l0+LX
l=l0�L

m0+MX
m=m0�M

yl;m(k)� yl0;m0
=

LX
l=�L

MX
m=�M

!l;myl0+l;m0+m(k)

with ! = 1 for every (l;m) 6= (0; 0) and ! = 0 otherwise in the related box. This is the well-known

formula of the convolution product ! ? y of a signal y by a kernel ! which leads us to consider the

interaction of the neighborhood on the site as the one of a linear (or not!) system with a given transfer

function. For sake of simplicity, we restrict now our attention to linear system with M = L = 2r+1.

What can we do about the local function?

Provided L is C0 and of �nite energy with respect to the scalar product:

hf; gi = 1

2nn!
p
�

Z
1

�1

f(x)g(x)e�x
2

dx

that is
R
1

�1
e�t

2

L2(t)dt <1, it can be expanded in Hermite's polynomial series:

L(x) =

1X
k=0

�kHk(x) with �k =
1

2kk!
p
�

Z
1

�1

Hk(x)L(x)dx: (1)

The system is thus governed by the equation:

y(k + 1) =

1X
i=0

�iHi(y(k)) + ! ? y(k): (2)

In the following, expansion is stopped at rank p. As we shall see, this particular choice of Hermite's

expansion of the local function is motivated by the de�nition and the practical computation of the

structural information.

3 Computation of kernel and site functions

Let us consider an image I of some process showing evidence of spatial structures we would like to

model. We assume we don't have any additional information about this image, that we know neither

the image which initiated the process, nor whether the observed structures are stable or unstable, nor

if the grid of the image is the support of the lattice. Reminding that the general inverse problem for

CA is NP-hard, the CML inverse problem without any hints seems hopeless and it is not surprising

that only a tiny e�ort has been devoted to it.

Instead of the rigorous mathematical problem of �nding the right CML which generates image I
(as a stable point, if it has any), we can wonder:

Is there any CML which may generate a close image?



94 E�ective Computation of 2D Coupled Map Lattices

Of course, the proximity of the original image and the computed one must be expressed in terms

of some structural distance, provided the favored structures gather the information we are interested

in. Rewritten like this, the exact inverse problem becomes an approximation problem, which can be

solved in several ways under the right assumptions. Our attempt, which hopes to remain as general

as possible, is the following.

Square images are considered instead of rectangular ones for the sake of simplicity, without loss

of generality. Let I = (gi;j)1�i;j�P be the original R-valued image of size P � P . The estimated

computed image bI is given by the general equation 2 which can be rewritten as:

bgi;j = pX
k=0

�kHk(gi;j) +

rX
k=�r

rX
l=�r

[1� �k;l]!k;lgi+k;j+l

(� is the Kronecker delta), or, with a little linear algebra:

bg = L(�;g) + T (!)g (3)

or again, in explicit form:

0BBBBBBBB@

bgi�r;j�r
: : :

: : :bgi;j
: : :

: : :bgi+r;j+r

1CCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBB@

pX
k=0

�kHk(gi�r;j�r) +
X

�r�i0; j0�r
i0<0 or j0<0

gi+i0;j+j0 !i0;j0

: : :

: : :
pX

k=0

�kHk(gi;j)

: : :

: : :
pX

k=0

�kHk(gi+r;j+r) +
X

�r�i0; j0�r
i0<0orj0<0

gi+i0;j+j0 !i0;j0

1CCCCCCCCCCCCCCCCCCCCA

+

0BBBB@
!0;0 : : : !r;r : : : 0

� � � � � � � � � � � � � � �
!�r;�r : : : !0;0 : : : !r;r
� � � � � � � � � � � � � � �
0 : : : !�r;�r : : : !0;0

1CCCCA
0BBBB@

gi�r;j�r
: : :

gi;j
: : :

gi+r;j+r

1CCCCA : (4)

In equation 3, � and ! are vectors with entries (�0; � � � ; �p) and (!�r;�r; � � � ; !0;0; � � � ; !r;r); please
notice that !0;0 may be di�erent from 0. The vector g = (gi�r;j�r; gi�r;j�r+1; � � � ; gi+r;j+r) is the
input of the equation. N is a Gaussian noise modelling the inuence of the image outside of the

rectangular box, its mean and variance are � = E[1Tg] and � = E[gTg] which are easily found by

direct computations over the set of neighborhoods. Thus, T (!) is a Toeplitz matrix which shows

interesting theoretical properties.

If the local function (i.e. the �i;j 's) were known, the coupling function would be given by the

inversion of a large sparse matrix of size QN �QN or, equivalently, by the inverse of the mean 
 of

all the matrices of size (2r + 1) � (2r + 1) over the image. The �rst method is called deconvolution

and generally approached by the second one which yields a system like:

! = (
(�0; �1; � � � ; �p))�1
V(�0; �1; � � � ; �p) (5)

or, in a less aesthetic form:
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! =

�P
k

(X(k);Y (k))2T (I)

PP�r�1
i=r+1

PP�r�1
j=r+1 gX(k);Y (k)gX(l);Y (l)

�(�1)

�
�P

k
(X(k);Y (k))2T (I)

PP�r�1

i=r+1

PP�r�1

j=r+1 gX(k);Y (k)bgi;j� ; (6)

with special indices X(k) = i+ r�bk=(2r+1)c and Y (k) = j+ r� (k mod r) (bxc is the oor integer
value of the real x). The sums are restricted to a set T (I) we shall discuss in the next section. Our

problem is thus equivalent to the coupled subproblems:

Minimize k bI � I k()
8>><>>:

! = (
(�0; �1; � � � ; �p))�1
V(�0; �1; � � � ; �p);

Minimize p;
@

@�k

X
I

(bgi;j � gi;j)2 = 0 1 � k � p:
(7)

We haven't taken up the problem of �nding the best p but the third subproblem is solved easily

by minimizing the quadratic error:

@

@�k

X
I

(bgi;j � gi;j)2 = 0)
X
I

 
pX
0

�kHk(g) + (T (!)� 1)g

!
Hp(g) = 0: (8)

Inverting the summation order yields a linear equation H� = E(!) with H being the sum over

the whole image I of the Hermite's polynomials.

Proposition 9.1 The solution of eq. (2) is approximated by the system:

� = H�1E(!) and ! = 
�1(�)V (�):

A standard Conjugate Gradient Method [21] has been used for minimizing this system; due to

polynomials properties, the Hessian matrix used in the algorithm has again a special form. The

starting point of the procedure is given as �0 = �1 = 1; �k = 0; k � 2 and ! as the Gaussian kernel

from equation 9 below.

Since the behavior of the CML is assumed to admit the input image I as a \rather stable" point,
the Jacobian of the system over a small part of the image:>>>>>>>>@bg(�1; �2; � � � ; �n)

@(�1; �2; � � � ; �n)

>>>>>>>>
g1;g2;���;gm

has to be at most zero, at least minimum in magnitude. Its computation is a little tricky since it

makes use of Hermite's polynomials recursion property and a discussion about it is out of the scope

of this paper. On the other hand, the structural information of the image must remain invariant, i.e.

under the action of the Gauss operator. This nuance on the meaning of a stable point should lead to

a di�erent analysis of stability.

4 A new de�nition of structural information

The �nite sums in 7 are performed on a set T (I) we haven't explicitly de�ned yet: this is the set of

connected structures within I. According to our initial hypothesis, it collects the essential structural
information needed to compute the CML. In [19], Roy and Amritkar de�ne a structure as a region

of space such that the di�erence in the values of close sites within this region is less than a given

threshold. As such a simple de�nition could not be consistent with more advanced sophisticated

structural models, we de�ne a structure to be the curve on which the Laplacian of the image is zero.
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(a) A 256� 256 part of a 1024� 1024 CML (b) The structural information image com-

puted with a Gaussian kernel

Figure 1: example of structures extraction.

First, the notion of structure has to be de�ned clearly; second, an explicit numerical method

has to be found. A preliminary remark is that we consider the array of values of the CML as an

image, in the common understanding of it. In that case, a structure can be de�ned according to the

Mumford-Shah model which seeks simultaneously for a piecewise smoothed image F (I) with a set

 of abrupt discontinuities called the edges. It can be shown [15] that the best edge detector is the

system minimizing the following functional with respect to F:

�(F; ) =

Z
In

(j rF j2 +(F � I)2)d�+ length():

The �rst part means that the smoothed image is actually smooth outside of the edge set, the

second that it is a good approximation of the initial image and the third that we look for a minimal

set, discarding trivial solutions. In many ways, minimization of this functional is linked to solving

the heat equation a favored operator of which is the Gauss function. As a conclusion to a theoretical

analysis of these arguments, we de�ne the structural information in a CML as:

De�nition 9.1 The �-structural information set of a CML is the connected set of the zero-crossing

of the Laplacian in the range [��; �].

Non-connected edges are not taken into account since they vanish after a few iterations.

Numerous methods (may be a thousand!) exist in image processing for performing edge segmen-

tation and edge connection. We have naturally been led to follow Marr and Hildreth's approach [13]

which consists in smoothing I by a Gaussian kernel, then in applying the Laplacian of the Gauss

function, numerically computed by the di�erence of two Gaussians (DOG operator). For instance,

�gure 1 is a subimage of 20,000 iterations of 0:389H1(g)�0:016H3(g)+Tg on an initial random image

where T is the �rst approximation of a Gaussian kernel, i.e.

T =

24 0 �1 0

�1 4 �1
0 �1 0

35 : (9)
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As in the de�nition of the evolution equation 2, the Gauss function plays a crucial role: more

precisely, the structural information of the CML is mainly captured by the coupling function.

5 Experiments

Figure 2: natural rocks formations in Svalbard.

While honeymooning in Spitzberg in 1997, I arrived near New London (a smiling place which

counted about 7 inhabitants at his best in the last century, when they were trying to extract marble

from the stones under the ice) in a at �eld covered with surprising formations, occurring in closed

curves of medium size rocks put on a layer of smaller stones (see �gure 2). Amazed, I took a picture

of it and, back to the lab, tried to play with a simple CA simulation software so as to generate similar

patterns. Of course I succeeded in doing something but was unable to know how valid my experiments

were since I had no quality criterion.

Before applying the present identi�cation process to the image, some preprocessing was made.

First, the interesting part of the image showing the patterns was selected and mapped to a reference

plane, after suppression of geometrical e�ects due to both perspective and camera optics (�g. 3.c);

please note that this operation yields a triangular image. The structural information was then ex-

tracted from a rectangular part of the bottom of the image (the more accurate part); �gure 3.d shows

the structural information superimposed to the initial image.

For the structural information being computed, the computed solution is

! =

24 0:1;�0:1; 0:1
�0:1;�0:2;�0:1
0:1;�0:1; 0:1

35 ; � =

26666664
9:� 10�7

0:24

1:1� 10�6

�0:17
10�8

9:22� 10�4

37777775 :
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Mapped image Structural information
Figure 3: preprocessing of the initial image.

10 iterations 100 iterations 1000 iterations
Figure 4: evolution of the computed CML.

Figure 4 shows respectively 10, 100 and 1,000 iterations of the previous function (the contrast has

been enhanced so as to show tiny details). While the background changes dramatically from (e) to

(f), one can check show that the patterns capturing the structural information remain quite stable.

6 Conclusion

Coupled map lattices were introduced about �fteen years ago as models of extended dynamical sys-

tems. One of their advantages is to show a very rich space-time dynamical behavior. However, most

of the analytical studies in the literature have been restricted to low-order monic site functions since

cubic or higher-degree polynomials are very hard to deal with analytically.

In the present case, we focused on the identi�cation (or inverse) problem, considered in an approx-

imation framework. This led us to de�ne a notion of structural information coherent with information

theory concepts and a new form of the evolution equation suitable for computational issues. A nu-

merical identi�cation algorithm has been proposed.

A lot of work remains to be undertaken in the direction of a reliable approximation tool, namely the

study of the pseudo-stability of approximating CMLs and of their accuracy as well as the relationship
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between patterns and the computed kernel, which was one the primary goals. Also, global parameters

should be estimated on practical experiments and compared to theoretical studies.

I would like to thank Ronan Thomas who performed the image registration.
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Abstract

A di�erential equation, periodically driven with period T , de�nes the time evolution of the
solution, a state vector x(t). The Poincar�e, or time one, map is a function that relates x(t+ T )

to x(t). For most second and higher order nonlinear di�erential equations, the Poincar�e map is
not available in a closed form; it can generally only be inferred from numerical calculations.

In this paper, we derive an iterative representation of the Poincar�e map for Du�ng's equation.
Our objectives are (a) to represent the mapping in as succinct a form as possible (compact enough

to be published in this paper) and (b) to demonstrate that this map representation adequately
reproduces the behaviour of Du�ng's equation, for instance bifurcation diagrams, co-existing
attractors and Poincar�e sections. We succeed in these objectives, and our representation increases

computation speed by a factor of 45 over traditional numerical calculations.

1 Introduction

In this paper we derive a representation of the Poincar�e map for a periodically driven di�erential

equation. We then compare the mapping in this form to results obtained by traditional numerical

integration of the di�erential equation.

For the purposes of illustration, we con�ne ourselves to the well-known Du�ng equation in the

form:
d2x

dt2
+
3

2

dx

dt
+ 40x(x2 � 1) = A sin 2�t (1)

although our conclusions are valid for a wide class of di�erential equations. The period of the drive

T = 1 and its amplitude is A. This di�erential equation has been studied intensively in the past

because, despite its apparent simplicity, it can display coexisting solutions, and periodic and chaotic

behaviour as A is varied.

Throughout what follows, it is convenient to re-write equation (1) as two coupled di�erential

equations:

_x = y

_y = A sin 2�t� 3y=2� 40x(x2 � 1); (2)

where _x is the time derivative of x. The state vector, which describes the state of the system at a

time t, is then x(t) = [x(t); y(t)].

Of particular interest is the Poincar�e map for Du�ng's equation, de�ned as the function � such

that

x(T ) = �(x(0)) (3)

or, splitting � into its components,

x(T ) = �x[x(0); y(0)] and y(T ) = �y[x(0); y(0)] (4)
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Figure 1: The Poincar�e map, �x[x(0); y(0)], obtained numerically. In this and the following two

�gures, A = 13, corresponding to a chaotic solution.

It can be shown [1] that the mapping so de�ned is unique, single valued and di�erentiable. The

Poincar�emap expresses all the essential information about solutions to Du�ng's equation; for instance,

for a value of A for which the di�erential equation has a period-n/chaotic solution, iterating the

Poincar�e map will also produce a sequence of points that repeats every n/is chaotic. Hence, if the

Poincar�e map were available in closed form, this could be iterated for an arbitrary initial condition x0
to unravel the behaviour of solutions of Du�ng's equation (with the same initial condition) without

resorting to numerical solutions.

What does �(x) actually look like? Figures (1) and (2) show, respectively, �x[x(0); y(0)] and

�y[x(0); y(0)]. Figure (3) is a section through these maps at y(0) = 2. The �gures suggest that

�(x) has a reasonably complex structure with large �rst- and higher-order derivatives. This in turn

suggests the impracticality of representing the map by standard surface �tting methods, for example

two-dimensional splines or two-variable polynomial curve �tting. In the case of splines, a large number

would be required to reproduce the mapping faithfully, and in the polynomial case, a very high order

polynomial would be needed. This is contrary to our stated objective of representing the Poincar�e

map in as succinct a form as possible.

2 Derivation of the representation

We now derive our representation of the Poincar�e map. Figure (5) illustrates the process of analytical

continuation [2] applied to this problem. The techniques is also known as cell-to-cell mapping [3].

2.1 Analytical continuation

It is necessary to look on the solution x(t) as a function of complex time. This function has poles which

are a short distance o� the real t-axis, and their positions can be calculated [4] using, for instance,

the ratio-like test of [5]. It is the existence of these poles that prevents us from writing the Poincar�e

map simply as a two variable power series in x(0); y(0) | they are close enough to the real t-axis to

prevent a single such series from converging over the whole range t = 0 to t = T .
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Figure 2: The Poincar�e map, �y[x(0); y(0)].

We can estimate from real x(t) data only, roughly how far the poles are from the real axis.

Numerical evidence [4] and leading order analysis both suggest that all the poles in complex t for

Du�ng's equation are of �rst order. They must also occur in conjugate pairs since x(t) is real for real

t. Hence, x(t) for real t around the line joining such a pair, must be of the form

x(t) =
r

2i Im z

�
1

t� z �
1

t� z�
�

where r is the residue of the poles and z, z� are their positions. We require an estimate of Im z. The

turning point of x(t) occurs at t = Re z. Furthermore,

�x(Re z) = � 2r

( Im z)4

and so

Im z � �
s
�2x(t)
�x(t)

�����
t=Re z

(5)

This formula requires only data for real t and no knowledge of the residue. Typical results are

shown in �gure 4. The calculation is only an estimate because in practice there are many pole pairs;

the more isolated they are, the better the estimate.

Analytical continuation is a technique that allows us to work around the problem of convergence

limited by the presence of poles. We assume that about a point t = tk, there exists a series solution

to a second-order di�erential equation with initial conditions x(tk) = [x(tk); y(tk)], in the form:

x(t) =

1X
n=0

an(t� tk)n; (6)

with a0 = x(tk) and a1 = y(tk). The series (6) converges inside the circle Ck , centre tk, of radius rk; rk
is the distance to the nearest pole in the complex time plane, as shown in �gure (5). The calculation

of the mapping then consists of the following steps:
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Figure 3: Sections through the Poincar�e map, �x[x(0);�2] (left) and �y[x(0);�2] (right).
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Figure 4: Approximate nearest pole position, and x(t) with its turning points marked, for A = 13.

The pole positions are estimated from equation 5.
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Nc-1C

Im(t)

10

X

X

Re(t)

C1

X

XC0

t1 Nc-2t Nc-1tt0

r0

r1

Figure 5: Analytical continuation is used to derive the mapping. The circles C0, C1. . . with radii

r0, r1. . . , are the regions of convergence of the series solution to Du�ng's equation about the points

t = t0, t = t1. . . . The crosses (X) represent the position of the poles in the complex plane, and occur

in conjugate pairs.

1. Given an initial condition, x(0), at t = t0 = 0, calculate the series for x(t) as described below.

2. Use this series to estimate x(t1). A practical value of t1 usually has to be found experimentally,

since the radius of convergence of the series is rarely known in advance.

3. Repeat the above process expanding around the points t = t1, . . . , t = tNc�2, where Nc, the

number of circles used, is chosen so that an adequate representation of the map is obtained.

Again, this value generally has to be obtained experimentally.

Hence, de�ning the function �
k
as

x(tk+1) = �
k
[x(tk)];

the Poincar�e map can be expressed as

�(x) = �
Nc�2

(�
Nc�3

(: : : �
1
(�

0
(x)) : : :)) (7)

We now explain how to derive the series for the �
k
, before demonstrating how the result in

equation (7) works in practice.

2.2 The recursion formula

Substituting the series (6) into an m-th order di�erential equation results in a recursion formula for

the coe�cients am; am+1 : : : in terms of the m initial conditions. For a linear/nonlinear di�erential

equation this recursion formula will be linear/nonlinear respectively.
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In the case of the Du�ng equation, the recursion formula is

an+2 = (�1)bn=2cA [2�(t� tk)]n
(n+ 2)!

�
sin 2�tk n even

cos 2�tk n odd

�
�

� 3an+1

2(n+ 2)
+

40(an � cn)
(n+ 1)(n+ 2)

(8)

where the cn are de�ned by

1X
n=0

cn(t� tk)n =

"
1X
n=0

an(t� tk)n
#3
:

Nonlinearity enters the recursion formula (8) solely through the cn. We can now calculate the

series for �
k
, from which the Poincar�e map for Du�ng's equation can be built up recursively.

3 Results

A little experimentation shows that if we sum the series (6) up to and including n = 5, then Nc = 10

circles su�ce for analytical continuation from t = 0 to t = 1, the period of the drive. The coe�cients

a0 : : : a5, for arbitrary A, are su�ciently simple algebraic expressions to be included in the Appendix.

We now compare the Poincar�e map constructed in the way described with numerical calculations.

The latter were carried out using a variable-order, variable step routine from the NAG library, with

a tolerance 10�8.

3.1 Basin of attraction

The basin of attraction of Du�ng's equation is in�nite | that is, any initial condition will lead to a

solution that eventually settles down to a small amplitude oscillation. On the other hand, our Poincar�e

map approximation in equation (7) will have only a �nite basin of attraction. That is, there are initial

conditions x(0); y(0) that will lead to a divergent sequence with x; y tending to in�nity. The basin of

attraction of our Poincar�e map approximation is de�ned as the region of the x; y-plane for which this

does not happen, and is illustrated in �gure 6.

3.2 Comparison of Poincar�e sections

Another comparison we have carried out concerns a chaotic Poincar�e section computed by both

methods. Using the same initial condition and A = 13 in both cases, we calculated (x0; y0) to

(x10000; y10000). We have plotted only the �rst 100 values in �gure 7 for clarity. Note that the actual

point positions calculated by both methods diverge from each other (only to be expected in a chaotic

system), but that the underlying structure of the attractor is insensitive to the method of calculation.

As an aside, it is interesting to note that our approximation runs about 45 times faster than the

standard numerical method.

3.3 Comparison of bifurcation diagrams

The �nal comparison we report here shows that our map representation is valid over a range of

bifurcation parameter A. The two bifurcation diagrams are shown in �gure 8. The upper one is

calculated by our algorithm and the lower one by a standard numerical integration, and the di�erences

between them are seen to be small.

At A � 17 the two bifurcation diagrams are seen to di�er; this is the result of the co-existence

of two di�erent solutions. Figure 9 shows that at A = 17:1, both the numerical solution and the

mapping display (a) a period-1 solution and (b) a chaotic solution. Which one is observed depends

on the initial conditions.
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Figure 6: The basin of attraction | on and

within the thick black curve | for our 5th-order,

10 circle approximation to the Poincar�e map with

A = 13. The Poincar�e section is also shown and

clearly lies well within the basin of attraction.
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Figure 7: Comparison of Poincar�e sections for

A = 13.

4 Discussion and conclusions

We have derived and veri�ed a compact, iterative representation of the Poincar�e map for the Du�ng

equation. Our method can be regarded as a highly specialised method for solving that particular

di�erential equation, and as a result of this, it is very e�cient compared to standard, general numerical

techniques. In practice, our method is around 45 times quicker. There is every reason to believe that

the same technique can be applied to other periodically-driven di�erential equations.

We have veri�ed that bifurcation diagrams and Poincar�e sections can both be faithfully reproduced

by our mapping, whose basin of attraction, although �nite, is large enough for most applications we

can envisage.

Finally, our work raises several interesting questions, among them:

Can any analytical results be derived from our representation?

Can a useful bifurcation analysis be carried out using our representation?

The expansion points used, tk, were uniformly spaced; might there be a better arrange-

ment? Is there an even more compact representation available? For instance, a Pad�e

approximation to the series (6) might have some advantages.

A Appendix

The 5th-order approximation for the y-component of �
k
(x) used in this paper is a0+ a1h+ : : :+ a5h

5

where h = t � tk. Writing x = x(0), y = y(0) for the initial conditions, we have a0 = y, a1 =

s+ 40x(1� x2)� 3 y=2 and

a2 =

�3 s
4

+ � c� 30x+ 30x3 � 60x2y +
169 y

8
a3 =

�� c
2

+

�
�2�

2

3
+
169

24

�
s+

845x

3
� 329 y

16
� 20 sx2 � 40xy2 +
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Figure 8: Comparison of bifurcation diagrams.

The upper diagram was produced with the algo-

rithm described in this paper; the lower one was

calculated numerically.
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Figure 9: Co-existing solutions at A = 17:1.

Continuous lines: numerically obtained period-

1 and chaotic solutions; �lled circle and crosses:

Poincar�e section of the same solutions.
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�
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�
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� 1645x

8
�

5 (2� c� 3 s)x2 � 30 sxy +
6445x3

8
� 10 y3 � 6535x2y

4
+ 60xy2 �

600x5 + 1800x4y

a5 =�
30001

1920
� 169�2

120
+
2�4
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�
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�
�329�
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+
�3
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�
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�
30001

48
� 6 s2

�
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82641 y

1280
+

�
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�
�2267

4
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�
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�
x2 + (�16� c+ 39 s)xy �

12 sy2 � 657361x3

48
+ 21 y3 +

3867x2y

2
� 1859xy2

2
+ 600 sx4 �

2100x4y + 27470x5 + 1680x3y2 � 14400x7

where s = A sin 2�tk and c = A cos 2�tk.

The x-component of �
k
(x) is then just x+

R h
0
a0 + a1h+ : : :+ a4h

4 dh to 5th-order in h.
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Abstract

Lifting Boolean to continuous CA by fuzzi�cation of the disjunctive normal form local rule
enables the analytical derivation of results for an interesting class of systems: Fuzzy CA, which

include the Boolean evolution as a particular case. We concentrate on Fuzzy Rule 90, whose
Boolean version has deserved some attention for the complex patterns it generates. We prove
that aperiodicity is present in both versions, and a strong convergence to a �xed point is added

in the fuzzy case, which extends and complement Jen's result on aperiodicity of Boolean CA.
Moreover, we show that the complex pattern and the apparent chaotic behaviour observed in its
Boolean evolution are not an inherent property of Rule 90 but rather an artifact of the �xed point

being an extreme of one of the two value intervals.

1 Introduction

Boolean cellular automata (CA) have been introduced by von Neumann as models of self-organizing/re-

producing behaviors [12]. Today, their applications range from ecology to theoretical computer science

[5, 10, 13]. Recently, a continuous model of CA, namely Fuzzy CA, has been introduced to investigate

complex behaviors [1, 2] and to study the impact of perturbations (e.g. noisy sources, computation

errors, mutations, etc.) on the evolution of Boolean CA [4]. While Boolean CA have been extensively

studied from many di�erent angles, little is known about continuous CA, although related to Coupled

Map Lattices which, on the contrary, have received more attention, both theoretically and practically

[9].

One of the most studied problems in the CA community is the classi�cation of long-term behaviors.

For instance, in Wolfram's classi�cation [13], the CA rule space is partitioned into four categories,

based on the observed long-term attracting behavior of CA starting from random initial con�gura-

tions. From [3], we know that any nontrivial classi�cation is undecidable, but this restriction has not

discouraged many authors to study subclasses of Wolfram's Classes 3 and 4, which respectively reveal

complex dynamical and computational features. In particular, the chaotic Boolean Rules 90 and 18

have deserved a special attention, due to the fractal-like patterns they generate [7, 8, 11].

The goal of our work is the analytical study of dynamical properties of Fuzzy CA rules which

generalize CA to continuous local states by using fuzzy operators instead of Boolean ones. The main

advantage of lifting CA from Boolean to real numbers is that we can use classical tools of dynamical

systems theory. In this paper, we focus on Fuzzy Rule 90, as its Boolean evolution, although linear,

is considered to be complex (e.g., see [8, 11]). We show that the behavior of the fuzzy version,

which has never been studied before, is actually very simple: independently of initial con�gurations,
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the system converges to a �xed homogeneous con�guration. In the particular case of �nite support

con�gurations, we generalize Jen's result [8, Prop. 2] on aperiodic sequences in Boolean Rule 90:

we prove aperiodicity of temporal sequences in each site, but also in every diagonal and even every

nontrivial temporal sequence of the spatio-temporal diagram of Fuzzy Rule 90.

The results of our analysis lead to an intriguing question. Since Fuzzy Rule 90 has always a simple

behaviour (convergence to a �xed point), where do the complex pattern in its Boolean evolution come

from? We solve the puzzle and show that the apparent chaotic behaviour of Boolean Rule 90 and its

famous fractal-like patterns are only an artifact of having the �xed point 1
2
as an extreme of the two

discretized intervals (i.e., the result of visualizing the behaviour using only two values).

2 Basic de�nitions

A cellular automaton is a collection of cells arranged on a graph. All cells share the same local space

(i.e., the set of values cells range in), the same neighborhood structure (i.e., the cells to which a cell is

connected), and the same local function (i.e., the function de�ning the e�ect of neighbors on each cell,

also called transition function or rule). The global evolution is de�ned by the synchronous update of

all values according to the local function applied to the neighborhood of each cell. A con�guration of

the automaton is a description of all cell values.

Given a linear bi-in�nite lattice of cells, the local Boolean space f0; 1g, the neighborhood structure
h left neighbor, itself, right neighbor i, and a local rule g : f0; 1g3 7! f0; 1g, the global dynamics of an
elementary CA is de�ned by:

f : f0; 1gZ 7! f0; 1gZ
s.t. 8i 2 Z; f(x)i = g(xi�1; xi; xi+1):

The local rule is de�ned by the 8 possible local con�gurations a cell can detect in its direct neighbor-

hood:

(000; 001; 010; 011; 100; 101; 110; 111)! (r0; � � � ; r7);
where each triplet represents a local con�guration of the left neighbour, the cell itself, and the right

neighbour. In general, the value
P

i=0:7 2
iri is used as the name of the rule. The local rule of any

Boolean CA is canonically expressed as a disjunctive normal form:

g(x1; x2; x3) = _ijri=1 ^j=1:3 x
dij
j

where dij is the j-th digit, from left to right, of the binary expression of i, and x0 (resp. x1) stands

for :x (resp. x).

De�nition 11.1 A Fuzzy CA is obtained by fuzzi�cation of the local function of a Boolean CA: in the

disjunctive normal form, (a_b) is replaced by (a+b), (a^b) by (ab), and (:a) by (1�a). The resulting
local rule is a real-valued function simulating the original function on f0; 1g3, with l(a; 0) = 1� a and

l(a; 1) = a:

g : [0; 1]3 7! [0; 1]

s.t. g(x1; x2; x3) =
P

i=0:7 ri
Q

j=1:3 l(xj ; di;j):

Example 11.1 Consider rule 14 = 2 + 4 + 8:

(000; 001; 010; 011; 100; 101; 110; 111)! (0; 1; 1; 1; 0; 0; 0; 0):

The canonical expression of rule 14 is:

g14(x1; x2; x3) = (:x1 ^ :x2 ^ x3) _ (:x1 ^ x2 ^ :x3) _ (:x1 ^ x2 ^ x3):
The fuzzi�cation process after simpli�cation yields:

g14(x1; x2; x3) = (1� x1) � (x2 + x3 � x2 � x3):
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In the rest of this paper, unless speci�ed otherwise, we will study Fuzzy Rule 90, de�ned by the

local function
g : [0; 1]3 7! [0; 1]

s.t. g(x; y; z) = x+ z � 2xz:

3 Homogeneous con�gurations

The �rst step of our analysis consists in a strong assumption on the values undertaken by the fuzzy

cells of the automaton we consider: they are all initialized to the same value and, as the global dynam-

ics is homogeneous, all subsequent con�gurations are homogeneous, too. This reduces the in�nite-

dimensional system to a a one-dimensional one, the dynamics of which is analyzed in a straightforward

way. The motivation is to get a clear idea of the local process.

The reduced function is
h : [0; 1] 7! [0; 1]

s.t. h(x) = 2x(1� x):
It has two �xed points: 0 and 1

2
. The absolute value of the �rst derivative h0(x) = 2(1�2x) evaluated

in each of these �xed points gives jh0(0)j = 2 and jh0( 1
2
)j = 0. Thus, 0 turns out to be repelling, and

1
2
is an attractor. The second order Taylor expansion of h around x is

h(x+ u) = h(x) + h0(x)u+
1

2
h00(x)u2

= 2x(1� x) + (2� 4x)u� 2u2

and, around the �xed points, we have h(u) � 2u and h( 1
2
+ u) = 1

2
� 2u2. Initial conditions close to

zero are essentially multiplied by two, and attracted by 1
2
: for any u 2 (� 1

2
; 1
2
), h( 1

2
+ u) is strictly

closer to 1
2
than 1

2
+ u.

Thus, this one-dimensional system behaves in a very simple way: 0 is a repelling �xed point; 1 is

attracted to 0 in one iteration; 1
2
in an attracting �xed point whose basin is the open interval (0; 1).

4 Single values in zero backgrounds

In this second analysis, all cells but one are initially set to 0. This step is motivated by the classical

analysis of �nite support con�gurations of Boolean CA [8]. For example, starting from a single value

a = 1
4
in a zero background, the spatio-temporal evolution is represented in Table 1.

Local states

Time � � � �3 �2 �1 0 1 2 3 � � �
0 � � � 0 0 0 1

4
0 0 0 � � �

1 � � � 0 0 1
4

0 1
4

0 0 � � �
2 � � � 0 1

4
0 3

8
0 1

4
0 � � �

3 � � � 1
4

0 7
16

0 7
16

0 1
4
� � �

4 � � � 0 15
32

0 63
128

0 15
32

0 � � �
...

...

Table 1: Evolution from 1
4
in a zero background.

More abstractly, assuming a 6= 0 and ga(x) = g(x; �; a) = g(a; �; x) = a + x(1 � 2a), we have the

evolution of Table 2. What is the rule underlying these numbers, if any?
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Local states

Time � � � �3 �2 �1 0 1 2 3 � � �
0 � � � 0 0 0 a 0 0 0 � � �
1 � � � 0 0 a 0 a 0 0 � � �
2 � � � 0 a 0 h(a) 0 a 0 � � �
3 � � � a 0 ga(h(a)) 0 ga(h(a)) 0 a � � �
4 � � � 0 g2a(h(a)) 0 h(ga(h(a))) 0 g2a(h(a)) 0 � � �
...

...

Table 2: Evolution from a in a zero background.

De�nition 11.2 The spatio-temporal diagram from an initial con�guration x0 is the double sequence

(xti)i2Z;t2N where t expresses time steps, and i denotes cell indices.

De�nition 11.3 The jth diagonal is the sequence (x
i+2(j�1)

i )i�0.

De�nition 11.4 The light cone from a cell xti is the set fxt+pj j p � 0 ^ j 2 fi� p; � � � ; i+ pgg.
Proposition 11.1 The second diagonal of the spatio-temporal diagram obtained by the evolution of

Fuzzy Rule 90 from a single value a 2 (0; 1) in a zero background converges to 1
2
.

Proof. The �rst diagonal starting from the central non-zero value a is uniformly equal to a. The

second diagonal, from h(a), can be obtained by successive iterations of ga(x). It has exactly one �xed

point x = 1
2
, independently of a. The absolute value of the slope of this linear function is smaller than

one i� a 2 (0; 1). This means that the second diagonal converges to 1
2
as time goes to in�nity.

Let f(t; i) =

�
t
t+i
2

�
, where

�
a

b

�
= a!

b!(a�b)!
.

Proposition 11.2 The spatio-temporal diagram from a single value a 2 (0; 1) in a zero background

is explicitly given by: 8t 2 N,

xti =

�
1
2
(1� (1� 2a)f(t;i)) if t+ i is even and i 2 f�t; � � � ; tg

0 otherwise

Proof. By induction. The �rst case is straightforward: x00 = a and 8i 6= 0; x0i = 0. The inductive

case is twofold.

� If (t+ 1) + i is odd, i > t+ 1 or i < �t� 1, then xti�1 = xti+1 = 0, whence xt+1
i = 0.

� Otherwise, (t+1)+i and t+(i�1) are even, and i 2 f�t�1; � � � ; t+1g. Thus, if �(t�1) � i � t�1,
then

xt+1
i = g(xti�1; �; xti+1)

=
1

2
(1� (1� 2a)f(t;i�1)+f(t;i+1))

=
1

2
(1� (1� 2a)f(t+1;i)):

The two limit cases are i � 1 = �t � 2 and, symmetrically, i + 1 = t + 2. Let us examine the

�rst one:

xt+1
i = xt+1

�t�1 = g(xt
�t�2; �; xt�t) = g(0; �; xt

�t) = xt
�t

=
1

2
(1� (1� 2a)f(t;�t)) = a:
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Figure 1: Evolution from a random fuzzy con�gu-

ration. Grey levels indicate di�erent value ranges.

Time evolves from top to bottom.

Thus, any in�nite sequence of non-zero terms in the diagram, no matter how crazy it is, converges

to 1
2
, provided that it is embedded in the light cone originating from the central a, and the sequence

of non-zero time steps tends to in�nity: the central column, any diagonal, any sequence containing

horizontal segments or even backward loops, they all converge to 1
2
.

Corollary 11.1 Let x00 = a 2 (0; 1), x0i6=0 = 0, i : N 7! Z and � : N 7! N be two functions such

that i(0) = �(0) = 0, ji(j)j � �(j), x
�(j)

i(j)
6= 0, and limj!1 �(j) = 1. Then, the sequence (x

�(j)

i(j)
)j2N

converges to 1
2
.

Remark 11.1 We have considered, both aperiodicity and convergence are present. Exactly as in

nontrivial evolutions of Boolean Rule 90 [8], any nontrivial in�nite sequence of states taken in the

spatio-temporal evolution of Fuzzy Rule 90 from a single value in a zero background is aperiodic, due

to Proposition 11.2. On the other hand, any such sequence converges to a speci�c value, here 1
2
, which

was not the case of Boolean Rule 90.

Remark 11.2 If the initial con�guration contains two consecutive values, a and b, in a zero back-

ground, the result is obtained by superposition of the individual diagrams obtained from a and b. Let

(xti) be such that x00 = a and 8i 6= 0; x0i = 0, (yti) be such that y01 = b and 8i 6= 1; y0i = 0, then

(zti = xti + yti) is the diagram starting from z00 = a; z01 = b and 8i 2 Znf0; 1g; z0i = 0. Unfortunately,

this property cannot be extended to larger �nite support con�gurations.

5 In�nite heterogeneous con�gurations

Here, we extend the analysis to evolutions starting from heterogeneous con�gurations, i.e., initial

values chosen arbitrarily in (0; 1) (see Fig. 1). With such a weak assumption, we are, of course, not

able to derive the closed-form expression of all xti , but the last result mentioned in x4 still holds: we

prove that any sequence of non-zero terms in the spatio-temporal diagram converges to 1
2
. We �rst

establish useful lemmas, then we prove the main result.

Let us rewrite the local function g as follows:

�(x; y) = g(
1

2
+ x; �; 1

2
+ y) =

1

2
� 2xy: (1)

Lemma 11.1 The function g is contracting around 1
2
:

8x; y 2 (0;
1

2
) [ (1

2
; 1); jg(x; �; y)� 1

2
j < minfjx� 1

2
j; jy � 1

2
jg:

Proof. Let us change the variables: x = 1
2
+ v; y = 1

2
+w, and rewrite the left-hand side expression:

jg(x; �; y) � 1
2
j = jg( 1

2
+ v; �; 1

2
+ w) � 1

2
j = j�(v; w) � 1

2
j = j2vwj. Since 0 < jwj < 1

2
, we have

j2vwj < jvj = jx� 1
2
j. Symmetrically, j2vwj < jwj = jy � 1

2
j.
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Lemma 11.2 The function g is k-contracting around 1
2
on [ 1�k

2
; 1+k

2
]:

8x; y 2 [ 1� k
2

;
1 + k

2
]; jg(x; �; y)� 1

2
j � kminfjx� 1

2
j; jy � 1

2
jg:

Proof. Changing variables as in the previous lemma, we have jg(x; �; y)� 1
2
j = j2vwj � 2k

2
jvj, since

y = w + 1
2
2 [ 1�k

2
; 1+k

2
].

The next example gives a convergence rate for purely temporal sequences of the diagram, i.e.

columns, if one every other row is ignored, as g does not depend on its central argument. The proof

easily follows from the previous lemma.

Example 11.2 If x0 2 (0; 1)Z and x00 2 [ 1�k
2
; 1+k

2
], then jx20 � 1

2
j � k2jx00 � 1

2
j, and the sequence

(x2t0 )t2N converges to 1
2
.

If connected paths are considered in the spatio-temporal diagram, the convergence rate is k.

Example 11.3 If x0 2 (0; 1)Z and x00 2 [ 1�k
2
; 1+k

2
], then jx1

�1 � 1
2
j � kjx00 � 1

2
j, and any connected

path (xj
i(j)

)j2N such that i(0) = 0 and 8j 2 N; i(j + 1) = i(j)� 1, converges to 1
2
.

Finally, using Lemma 11.2 again, we generalize Corollary 11.1: any path in the spatio-temporal

can be considered, and still lead to the same conclusion.

Theorem 11.1 Let x0 2 [0; 1]Z be such that lim inf x0i > 0 and lim supx0i < 1, i : N 7! Z and

� : N 7! N be two functions, �(0) = 0, and limj!1 �(j) = 1. Then, the sequence (x
�(j)

i(j)
)j2N

converges to 1
2
.

Proof. Let us de�ne k = 2maxfj lim inf x0i � 1
2
j; j lim supx0i � 1

2
jg. We have of course 0 < k < 1 and,

8i; x0i 2 [ 1�k
2
; 1+k

2
]. Thus, jx1i�1 � 1

2
j � kjx0i � 1

2
j � k k

2
. The evolution does not depend on position i

anymore; in fact, 8t; i; jxti � 1
2
j � 1

2
kt+1, whence the result.

6 On the observation precision

In the previous sections we have shown that that Fuzzy Rule 90 has a very simple behaviour: it

attracts everything to 1
2
. The result leads to the intriguing question: where do the complex pattern

in its Boolean evolution come from?

In this section, we solve the puzzle and show that the apparent chaotic behaviour of Boolean Rule

90 and its famous fractal-like patterns are only an artifact of having the �xed point 1
2
as an extreme

of the two discretized intervals; i.e., the result of visualizing the behaviour using only two colors) and

not an inherent property of Rule 90.

We know that Fuzzy Rule 90 attracts everything to 1
2
. We also know that the values alternate

around this point as they get closer to it: this is due to the minus sign appearing in equation (1). The

corresponding \rule table" is detailed in Table 3.

The graphical representation will thus strongly depend on whether 1
2
is in the middle or on a

border of some discretization interval. Partition the interval [0; 1] in a �nite number of subintervals

that are used as coarse-grained approximations of the real numbers.

If the �xed point 1
2
is in the middle of the central subinterval (as in Fig. 1), the observation becomes

homogeneous after a few steps, as all iterations get very close to the �xed point quickly.

On the contrary, if the �xed point is on the border of some subinterval, the values alternate around

the two subintervals bordering on the �xed point; thus, the visualization will show the alternance

between intervals (i.e., using di�erent grey levels, depending upon whether they are smaller or greater

than 1
2
) creating the seemingly chaotic triangular patterns (as shown in Fig. 2 left). This is exactly

what happens in the Boolean case, when the interval [0; 1] is divided into two subintervals, one having
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Behavior around 1
2

Boolean Rule 90

x y z g(x; y; z)

� � � �
� � + +

� + � �
� + + +

+ � � +

+ � + �
+ + � +

+ + + �

x y z g(x; y; z)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 0

Table 3: Behavior around 1
2
(left). The rule table is obtained from equation (1): � (resp. +) stands

for \smaller than 1
2
" (resp. \greater than 1

2
"). Remark that this table corresponds to Boolean Rule

90 (right), if � (resp. +) is replaced by 0 (resp. 1).

Figure 2: Fuzzy (left) and Boolean (right) evolutions; the patterns in the fuzzy evolution are due to

oscillations around 1
2
, observed via an appropriate discretization of [0; 1].

1
2
as an extreme. In other words, the well-known observed dynamics of Boolean Rule 90 (see Fig. 2

right) describes only the behavior of Fuzzy Rule 90 around its �xed point!

In other words, if the �xed point is on the border of some subinterval, visualization will show an

artifact of the discretization process; at the same time, it will not show the inherent covergence to 1
2

which is the basic behaviour of Rule 90.

Summarizing, the same dynamics can be observed as very simple or totally complex, depending

upon whether the attracting �xed point falls in the interior or on the border of some discretization

interval. This very important phenomenon is not a speci�c feature of Fuzzy Rule 90; actually, when

looking at the behavior of such systems by simulation, the descriptive precision used is of utmost

importance on the observed complexity and it should deserve a deep investigation.

In the future, we will extend the tools and results presented here to a larger class of continuous

CA rules. Instead of a case by case analysis, we could use abstraction techniques (building homo-

morphisms between known and new systems), functional transformations and composition operators

(composing known rules to obtain new ones, and combining individual properties to get global ones

homomorphically) preserving qualitative and/or quantitative dynamical properties.
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Abstract

A theoretical framework is proposed to explain how and where complex systems break up into
agents or species. Splits lead to diversi�cation and to abundance distributions which are similar to
power functions on a rank-abundance representation, and to lognormal functions on a frequency-

abundance representation. The combined manifestation of power and lognormal functions is a
polo distribution, a situation toward which there seems to be a widespread tendency in complex
systems (a polo pattern attractor).

Minimal complex system organisation requires three integrated hierarchical levels, the system,
agents and particles. The tendency to polo emerges, or can be explained by, resource particle
interaction, in which particles are attracted to each other according to their size and inversely to

their distances. Simulation of this simple rule on a preliminary model leads toward polo abundance
distributions. The level of abstraction allows the theoretical framework to be applicable to all
�elds where complex systems are found to have polo distributions. A clearer understanding of

the rules and forces leading to diversi�cation can have a range of applications in planning and
management for conservation, agriculture, business, health and other areas dealing with complex
systems.

1 Introduction

Evolution explains the mechanisms by which organisms change (mutation, recombination, selection,

developmental constraints), but how taxa split, and the causes and timing of diversi�cation are not

clear. Both biological and economic systems are characterised by trends of increasing diversity. The

abundance distributions of the elements (species, businesses, agents) of these systems tend toward

characteristic abundance-rank and frequency-abundance patterns. The patterns approach a power

function in the �rst case and a lognormal distribution in the second (polo for short).

Polo distributions are found in many complex systems, particularly with regards to aspects of size

(volume, length, biomass) in what has been called the Dyar-Hutchinson rule by May[24], referring to

living systems[29, 16, 15]. Similar distributions are also known in inanimate systems (e.g. nanoparticle

sizes,[32]).

First I present a theoretical framework to attempt an explanation on how and where splits occur in

a complex system, thus leading to both diversi�cation and polo distributions. Then a simple resource

attraction model is proposed to study the implications and e�ects of the theoretical concepts. The

model is based on simple rules, allowing it to simulate reality and be tested.

2 Background

Many di�erent models have been proposed to �t abundance distributions. These range from descrip-

tive (e.g. a mathematical curve that �ts empirical data) to attempting theoretical explanations of

mechanisms. Preston[26, 27, 28], MacArthur[20, 21] and Sugihara's[34] lognormal models assume a

at system with no vertical hierarchy and no links (e.g. the canonical lognormal or the broken stick

model). Kau�man's[17] NK models involve a number of elemental components linked in ways that

lead to global system behaviour, without hierarchies. Bak et al.'s[3] self-organised criticality depends

on the variations in size of agents by particle accretion, leading to a distribution of break-points
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(avalanches or catastrophes) with a power or 1=f distribution in a cellular automaton or topologi-

cal structure. Accretion is externally determined. Each cell can accumulate particles to a certain

threshold after which it `collapses', sending particles to neighbouring cells. If all cells are close to the

threshold (critical state), this can lead to a large domino e�ect. The distribution of `avalanches' tends

to a power function. Avalanches represent the agents.

Many more attempts have been made to explain polo distributions on a case by case basis, focussing

on a particular �eld of knowledge (e.g. [4, 37]). The latter models do not take into account the

universality of polo distributions. None of the above models has proposed a conceptual framework to

serve as a theoretical basis applicable to seek the mechanisms of diversi�cation from an undi�erentiated

start.

3 De�ning the processes and elements of a complex system

| toward a theoretical framework

3.1 Processes

In an initial amorphous mass of resources (a `simple' system), breaks may arise through unevenness

of attraction. Such a process has been hypothesised more simply in the broken-stick type models

mentioned above. Fragmentation at random as in the broken stick, or in crushing an object, tends

to produce a lognormal distribution of fragment sizes. Such models and real systems imply external

forces and no explicit relationality between elements. Here I postulate that the attraction between

resource particles (interactions or links), in combination with some stochastic variation in their sizes,

positions or both, leads to a rupture of the amorphous mass and clustering. This clustering changes

the amorphous mass into a system with agents (the clusters) separated by boundaries where resources

are rarer. The force of attraction is proportional to the mass of the resources, leading to a positive

feedback. As agents grow, they attract ever more resources. But the attraction is also inversely

proportional to distance. All agents in complex systems can be seen to respond in some ways to

this process of attracting resources in proportion to their magnitude (in whatever units this may be

measured) and inversely proportional to some measure of distance or di�culty to obtain that resource.

3.2 Elements

Complex system structure. Consider two basic types of systems: simple and complex. Simple

systems can be thought of as a group of undi�erentiated particles. There are two hierarchies:

the particles and the system. Complex systems must have a structure requiring a minimum of

three hierarchical levels: particles, agents and the system (�gure 1). Clumping into agents is the

result of the variable attractions between particles described above. Flexible boundaries delimit

agents. I postulate that the size of such agents tends to a polo distribution in all complex

systems where agents exchange resources in some way (relationality, competition or as used

here, attraction) and agents are capable of indeterminate growth. The polo is thus a signature

of complex systems.

There are two levels of complex systems according to whether signi�cant amounts of resources

ow through the system (e.g. dynamic biological and economic systems) or not (e.g. static

physical systems such as the solar system). The static complex systems are at the lower end of

the scale of complexity: the pattern is frozen. If resources ow through the system, it continues

to evolve into a complex dynamical system. The boundary between simple and complex systems

must be like a phase transition. Thus the distinction should be relatively clear in actual systems,

constituting a test to the de�nition.

Systems where the growth of agents is constrained through some information (e.g. size of

animals in a population, size of sand grains on the beach) tend to have a normal distribution

of the elements and no hierarchy, whether the underlying agents are complex or simple. This
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Figure 1: Minimum necessary structure of a complex system.

in turn depends on the character measured. The human population is normally distributed for

size, as size is genetically constrained, but may in some societies be lognormally distributed for

wealth when this is not culturally constrained.

Particles are the minimum units of resources. From an agent's viewpoint they are discrete packages

of resources of variable size or `mass'. Particles are analogous to individuals in a biological

population, to quanta of light or space in a plant community, to particles of dust in the cosmos,

or to economic elements. In an economic system the component elements are often called agents,

but this term should not to be confused with agents as de�ned here except when it refers to

companies.

Resources. Any thing or process for which agents may compete. Resources are designated here as

an abstract Mass (M), which can equally be seen to mean actual physical mass, biomass, space,

time, energy, �nancial resources, etc.

Agents constitute the intermediate hierarchical level, which qualitatively distinguishes a complex

system from a simple system. Agents arise when an initial undi�erentiated mass of particles

breaks up or coalesces (i.e. boundaries are formed) into a number of parts. Each agent contains

or controls a number of particles. Agents are analogous to species or companies. The system

boundary contains all the particles and all the agents.

Boundaries are formed where interactions are proportionately more important between the parti-

cles inside the agent than they are between them and particles outside. The same applies for

boundaries between systems at a higher level. Boundaries uctuate and have a certain degree

of permeability. This is a fundamental aspect of complex systems which is often overlooked and

leads to problems of sampling and de�nition (e.g. where are boundaries set from our perspec-

tive), and of successive nested hierarchical levels of complexity which vary in space and time

(e.g. [11], or the SWARM simulation system,[?].

3.3 Pattern attractor

Currently de�ned attractors are based on systems being represented by a single point moving through

phase space[38]. It is necessary to de�ne here a new type of attractor. Pattern attractors are de�ned

as attractors where the system can only be represented by the relative position of more than one

point in phase space. The phase space here is de�ned by two axes: frequency or rank, and abundance

or magnitude. The series of points and their positions creates a pattern which de�nes the system's

pattern phase state. The lognormal, or any other frequency distribution could be considered as

possible pattern attractors. I postulate that the polo distribution is the main pattern attractor for

the abundance distributions of complex systems.
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By providing this de�nition, we circumvent the debate on the appropriate mathematical distribu-

tions to �t to natural systems, a question which is untestable as there are in�nite numbers of natural

systems, each modi�ed by its own history. The question is not what distributions �t what empirical

data in a given time slice, but toward what curves distributions may be tending. Comparative studies

showing variations of goodness of �t to particular models will be more informative than a particular

goodness of �t. Thus many natural distributions are rather bad approximations to lognormal models.

However, if natural systems consistently approximate to lognormal models when left to their internal

mechanisms, while distancing themselves from the lognormal when pressured by external forces, then

we can suspect the presence of a lognormal pattern attractor. Considering a mathematical curve as

an attractor becomes a testable hypothesis.

3.4 The Polo Pattern Attractor

The widespread occurrence of polo distributions, and the fact that in many cases where distributions

shifted away from a polo pattern return toward that pattern, strongly suggest that the power function,

the lognormal distribution, or their combination in the polo distribution act as pattern attractors

for complex systems. The power functions and lognormal frequency distributions described in the

literature cited above are mathematically distinct. However, both distributions are present in the

same natural situations given certain restrictions on scale[34, 11, 36]. A data series with a lognormal

distribution will also exhibit a power function rank distribution for the right part of its range, e.g.

when its left side is veiled. Lognormal distributions found in nature are generally canonical and are

often veiled[24, 28, 22, 6, 7]. Conversely, empirical data series �tted to a power function[40, 23, 22]

also exhibit a pronounced drop or convexity at the lower right side, a distribution which resembles an

exponential function but often indicates lognormality.

The distinction between exponential and lognormal can be seen in a frequency-abundance repre-

sentation, where the exponential produces a straight horizontal line and the lognormal the typical

bell-shaped curve.

The ubiquitous occurrence of polo distributions has often been ignored or downplayed. For exam-

ple, Sol�e and Alonso[33] state `species abundance follows a power-law distribution and not a log-normal

one, as it is usually assumed.' This distinction between the two patterns is due to several causes:

� a large array of nomenclature for di�erent expressions describing what is at least in part the

same phenomenon, for example, power functions, fractals, 1=f noise, allometric species relations,

Pareto principle, lognormal, etc.

� a multiplicity of di�erent representations of abundance distributions[36].

� the amount of `noise' in many natural systems, leading to most data only approximating power

or lognormal distributions.

� sampling problems: where samples are too small the right part of the lognormal can be identical

to a power function.

In their particular �elds, polo patterns (in either of the forms stated above) have been variously

used to determine the optimum business and marketing strategy for a company (e.g. Pareto principle)

or to determine climates on the basis of vegetation structure and vice-versa (e.g. [29]). Polo patterns

have been proposed as diagnostic indicators of ecosystem health ([?] cited in [11], [18]), predictors of

vegetation changes and management tools for environmental risk assessment[31], determine sustain-

ability of agricultural systems[12] and to calculate inputs needed to maintain a system away from its

`harmonic' polo pattern[13]. Such studies implicitly accept that the polo pattern acts as a system

pattern attractor. Predictive powers could be re�ned if we could standardise representations and

de�ne the fundamental unifying principles leading toward the polo distribution. Then we will also be

able to search whether there are some other pattern attractors distinguishable as power, lognormal or

other. The challenge is not why complex systems have a polo distribution of abundance, which they
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Coordinate 1 2 3 4 5 6 7 8 9

Particle size

Time 0 0.9 1 0.9 1.1 0.9 1 1 0.9 1

Time 1 0.9 1 0 2.9 0 1 1 0.9 1

Time 2 1.9 0 0 2.9 0 1 1 0.9 1

Time 3 1 0 0 2.9 0 1 1 0.9 1.9

Time 4 1.9 0 0 2.9 0 1 1 0 1.9

Time 5 1.9 0 0 2.9 0 1 1 0 1.9

Table 1: Simpli�ed linear resource attraction model. Mean particle size= 1, range of variation= 0.1

and two links (i.e. one on each side).

often do not, statistically speaking, but to de�ne and quantify the forces that push complex systems

toward a polo distribution and how they function.

4 A Resource Attraction Model to Explore the polo attractor.

A resource attraction model (RAM) was developed for the exploration of the theoretical framework

described and to test whether these assumptions would lead to distributions of agent sizes approx-

imating lognormal or power distributions or both. The model would also allow the exploration of

sensitivity to initial conditions and variables and to compare its dynamics with empirical data.

4.1 Description

The model is based on a one-dimensional linear topology, but in principle can be expanded to more

dimensions. Resource `masses' are situated along this line with their position de�ned by a single

coordinate. Each resource particle will then have a distance (d) from other neighbouring resources.

The coordinate line can be made circular to avoid edge e�ects or a bu�er can be set up. Space and

distance here are fundamental abstractions applicable to any system. For example, in a biological

community, links between individuals of all species are to some extent a function of spatial distances,

but often more importantly of temporal, energy, matter and information `distances'.

Following the theoretical postulates, the model assumes that masses attract each other and that

the force of this attraction is a function of their mass and an inverse function of their distance. The

number of links (L) between particles or agents is a function of the individual force of attraction of

each particle (determined by its mass), and its distance to other particles. In theory, L is in�nite as all

particles can a�ect each other even at great distances. As only those links which are above a certain

strength are important to the agent dynamics, a subset of links to nearest neighbours represents

e�ective links, or Le.

Given an initial distribution of the two variables, particle size (M=mass) and particle position

(coordinates), the subsequent positions are calculated by the attraction. The attraction or pull is

calculated by the gravity analogy ofM1M2=d
2, where d is the distance calculated between the particles.

At each iteration, masses move according to the magnitude and direction of this pull. The movement

of particles to new cells results in clustering to varying degrees, depending on variables, thus forming

agents (table 1).

The simulation in table 1 leads to a frozen distribution in just 4 steps, with agents oscillating in

some cases between two positions. At time 1 one agent (on coordinate 4) has formed by accretion.

Particles in coordinates 6 and 7 have swapped over, both remaining at a value of 1. Circularity is

provided by the particles on the extreme left interacting with the particles on the extreme right.

The rapid freezing is similar to some physical systems such as the solar system where no substantial

quantities of new matter and energy enter the system, compared to the amount already there.
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A more realistic situation for dynamic biological systems can be achieved by adding a ow of

resources. This can be done by adding and subtracting resource particles at each step distributed

uniformly or at random and with a given degree of size variation. This rain of particles simulates

a continuous ow of energy or matter that leads to an increase in organisation or maintenance of a

characteristic pattern in dynamic systems. With this addition the system remains dynamic. Agents

evolve and become extinct, yet the abundance pattern still revolves close to a polo.

4.2 Basic rules, inputs and outputs

New Mass calculation: Actual mass � relative mass + mass attracted from neighbours + rain �
losses

Attraction calculation: M1M2=d
2

Relative mass: M1=Sum of neighbouring masses

Particle rain size: random or �xed around value decided

Proportion lost: M1� loss coe�cient

The input variables that the operator can modify are:

� total mass of resources

� total universe size (i.e. coordinate space)

� spatial distribution of particles

� number of e�ective links

� magnitude of the distance exponent

� resource rain, form of distribution and calculation

� particle mass, mean and range (i.e. variability of resource ow)

� resource loss (proportion)

� number of iterations

� minimum viable agent size

Additional constants and variables can be added and modi�ed to explore and �ne-tune the model

to particular types of systems. Such variations provide `vibrations' that can tip agents out of one cell,

catastrophes that can disrupt or destroy them, or slight changes that may help them capture new

particles.

The output parameters include:

� mean and deviation of the frequency distribution

� abundance-rank pattern and goodness of �t to power or other functions

� frequency-abundance pattern and goodness of �t to lognormal or other distributions

� total mass

� total agents

� agent dynamic uctuations over time
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Figure 2: Time sequence of

agent development. Linear

model starting from an initial

uniform distribution of parti-

cles of randomly varying sizes,

with particle rain at each step.

Mean particle size 1, range 0.2,

total mass 200{264, 10 links.

Dotted: t = 5, striped: t = 10,

full: t = 20.

5 Results of Simulations

The dynamics of the simple rules described above allow the exploration of the rule-space which leads to

diversi�cation. Results vary according to initial conditions, but remain similar within a wide range of

situations. For example, the model can simulate the emergence of diversity from an initial amorphous

mass of particles with uniform spatial distribution and some (e.g. 20%) variation in particle mass.

Particles start to cluster into agents. Larger agents capture neighbouring particles or whole agents

(take-over). Smaller agents grow slowly or become extinct. Occasionally, new agents arise (speciation)

(�gure 2).

The abundance distribution of agents tends to a power function with increasing slope toward the

right in a log-log rank-abundance relation or a lognormal (�gures 2{4). Also as in natural systems

modifying the variables can lead to a veiled or truncated lognormal, which is then almost identical to

a power function (see references under x3.4).
Despite the apparently chaotic dynamics of individual agents' growth and decline, the polo dis-

tribution attractor is robust for the RAM. Abundance distributions trend toward this attractor for a

range of di�erent variables, in many cases after very few steps (5{20). The similarity of two events

arising from di�erent initial sets of conditions in the rank-abundance graph (�gure 3), but the clear

distinction of the same two in the frequency-abundance graph (�gure 4, 2 = dotted line of �gure 3,2

= bold line), suggests that the lognormal has greater diagnostic capability than the power function

to discriminate the variables in action. For example, in systems which are large enough in relation

to the particles, the dip in slope at the right end of the rank-abundance distribution may become an

independent lognormal curve, showing that the system has split into two systems (e.g. as shown in the

case of macro- and micro-economic plants in New Zealand agriculture;[12, 14]. Such splits are clearly

apparent in frequency-abundance representation but not as obvious in abundance-rank representation.

Any distribution which starts as an orderly spatial array (e.g. an arithmetic progression: 1, 2,

3, 4, 5. . . ), ends up concentrating all resources on one coordinate; there is no diversi�cation. Thus,

the way the particles are distributed with respect to their links (i.e. space-distance) is of importance

to the development of diversi�cation. A completely uniform initial distribution (i.e. all 1, or all 2)

remains frozen in that same condition.
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Figure 3: Rank-abundance

distribution of agents. Agent

size is the mass of resources

captured by that agent. bold

line: with particle rain, mean

particle size 1, range 0.2, to-

tal mass 200{259, 20 steps,

10 links giving 45 agents of

mass > 2.8; dotted line: with-

out particle rain, mean parti-

cle size 1, range 2, total mass

210, 10 steps (frozen), 10 links

giving 33 agents of mass > 2.8.

6 Discussion

The theoretical model and the simple simulation described in this paper are clearly distinct. The

theoretical framework attempts to de�ne the fundamental components and concepts relating to com-

plex systems. The computer model is an extension of a `pencil and paper' exercise to visualise the

consequences of the theory. The model is only one of a range of di�erent approaches to test the theory.

6.1 Links

Kau�man[17] suggested that in a Boolean network the relation between number of links and number

of elements was critical to the system dynamics. Only intermediate values lead to polo distributions.

Too few links would make the system vary at random within a normal distribution (i.e. particles

clump in random group sizes according to an initial random distribution). Too many links would

freeze the system whichever way it started (historically determined). The RAM tends very often to

polo, so how is the ratio of e�ective links to number of particles (Le=N) close to the intermediate

values needed? In Boolean networks, the number of links is a discrete number imposed from the

outside. In the RAM the magnitude of Le is a continuous function of the force determined internally

by the rule of attraction. Boundaries to agents and to the system arise at the distance where the

internal attraction reaches a certain ratio to external attraction. The boundary encloses N particles

or resource mass. In this way N and therefore Le=N are set within certain bounds by the internal

rule.

6.2 Relationality: Attraction, repulsion, competition, cooperation

The theoretical framework may help clarify some debated aspects of the behaviour of complex systems.

The rule for attraction is analogous to gravity in a physical system, reecting the observable fact

that agents attract or pull in resources to grow whether they belong to physical, biological or economic

systems. The agent's attraction is a function of its mass and distance. The laws of increasing returns

and of diminishing returns in economics are some of the manifestations of this phenomenon in the

practical world. The law of increasing returns expresses the positive feedback between the size (e.g.

market share) of a company and its increasing ability to capture more resources (see [1]. The law

of diminishing returns observes that as an agent accumulates resources from a particular source,

the initial accumulation is cheap and easy, but as the resource is depleted and/or competitors arise,
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tion of agent sizes. Frequency

shows the number of agents

with a given resource mass or

size. Size shows the resource

mass in each class. V: with-

out particle rain, mean parti-

cle size 1, range 0.2, total mass

200, 10 steps (frozen), 10 links

giving 37 agents of mass > 2.8;

2: without particle rain, mean

particle size 1, range 2, total

mass 210, 10 steps (frozen), 10

links giving 33 agents of mass

> 2.8; 2: with particle rain, mean particle size 1, range 0.2, total mass 200-259, 20 steps, 10 links

giving 45 agents of mass > 2.8; 2: with particle rain, mean particle size 1, range 0.2, total mass

200-264, 20 steps, 10 links giving 50 agents of mass > 2.8; 2: mean of two last series.

capturing the resources becomes increasingly costly. In the terminology of this model the resource is

initially clustered, proximate and dense, leading to a high attraction, but at a later stage more distant

and dispersed, with a higher entropy, and therefore more di�cult to attract.

The attraction force can also be modelled as a repulsion force, as one is the inverse of the other

(e.g. [10]. Other phenomena arise from such a force, without having been explicitly included. The

notions of competition and cooperation arise as a result of attraction rather than as incompatible

theoretical options. Agents compete to attract resources in between them, and cooperate to attract

resources on either side of both.

6.3 Hierarchy and diversi�cation

An aspect of behaviour that can be inferred from the framework is that once evolved to a large size,

an agent can, in turn, become the basis for further di�erentiation on a new hierarchical level, and

levels can cross over. For example, socio-economic systems arise as agents (e.g. nation-states) which

break up into a series of new agents (provinces on a spatial scale, companies and ethnic groups on an

economic and cultural scale) or join into super-systems such as nation-blocks or alliances.

6.4 Di�erent one-dimensional self-gravitating models

Physicists have developed one-dimensional self-gravitating systems to explore multi-bodied dynamics

of attraction[9, 30, 39]. Such models di�er from the resource attraction model in that particles

accelerate until they either bounce elastically or pass through each other. There is no accretion into

larger agents. The dynamics of diversi�cation and abundance variations which occur in the resource

attraction model do not occur in these physical systems.

6.5 Convergence with other models

It is no coincidence that many models produce polo distributions starting from many di�erent explana-

tions (e.g. [40], John Conway's Game of Life, [5, 4, 25], as the trend results from similar fundamentals

such as neighbourhood interaction or competition for resources. Bak[2] suggested that such models

evolve to criticality, as do natural systems (e.g. [19]). Whatever the underlying principles, there is a
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need to describe these in a way valid for all systems. For example, the analogies with fundamental

quantum theory are intriguing (`quanta' of energy or mass, and attraction) and are may not be coin-

cidental. These analogies reect deeper mathematical laws (e.g. [35, 8]). The theoretical framework

proposed here is one attempt to identify such fundamental rules in a way which can be tested across

natural systems. The resource attraction model behaves robustly because the rules de�ne the system

at each level independently of the user.

6.6 Issues to explore

The resource attraction model allows the exploration of a variety of important questions concerning

the behaviour of complex systems. For example:

� explore the limit to diversi�cation or polo: are there limits to diversi�cation or to polo? If there

is a limit, what is it? are most systems at the limit? if not, why?

� explore the pattern attractor phase space by modifying rules and variables (e.g. the variables

leading to particular slopes or veil lines, conditions for splitting and diversi�cation, or the collapse

of diversity)

� under what conditions is the system most stable?

7 Conclusion

A theoretical foundation is proposed to explain the features and mechanisms of power and lognormal

distributions so widely found in nature. The framework is based on fundamental elements which

are observable in nature (e.g. attraction, distance), which lead to the breakup of resources into

new agents (speciation, diversi�cation) and emergent mechanisms to set boundaries. The level of

abstraction allows the model to be applicable to any complex system �tting the proposed de�nitions.

The model proposes that relatively simple rules lead to the emergence of polo distributions in

complex systems starting from a range of initial conditions. The prevalence of polo distributions

suggests that they could be used as management tools in conservation, agriculture, economy and other

disciplines dealing with complex systems (e.g. to determine ecosystem health, to predict agricultural

inputs, to pre-empt weed invasions or to determine the cost of an egalitarian society). The fact

that it is not used is to some degree due to the lack of an appropriate theoretical framework, to a

confusion between fundamental rules and noise, and to non-standardised language leading to lack of

communication.
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Abstract

The concept of a Variable Structure System (VSS),in which the structure is determined by the
dynamical response, is described and measurements and simulations on VSSs comprising electronic
systems which display bursty chaotic or \intermittent" behaviour, and also on a network tra�c

transfer protocol, which is demonstrated to be a VSS in the same sense, are used to support the
thesis that such bursty behaviour is common in such systems. An example of trapping in a two-
centre system is given to show that the ideas can be extended to continuous-variable dynamical

systems having piecewise-linear properties. The studies of these simple electronic systems provide
insight for cases where similar behaviour of a time series is observed in other complex systems;
some other VSSs are listed and their properties are considered.

1 Introduction

1.1 Background

This paper extends some previous work reported [1] at COMPLEX96 and developed [2] at the Cir-

cuits Conference ECCTD97 in Budapest, on simple electronic iterating circuits containing traps and

snags. The present paper also relates that work to the behaviour of arti�cial network tra�c models

reported [3] at COMPLEX94 and in a paper [4] in the International Journal of Electronics where the

mathematics is presented in full. These systems, together with a piecewise-linear dynamical system

comprising a two-centre harmonic oscillator, are interpreted as examples of a Variable Structure Sys-

tem (VSS). New observations are reported, of VSS-induced blocking behaviour on networks and of the

Crisis-induced intermittency which has been observed by direct experiment in the electronic circuits

described [1] at COMPLEX96, and is presented here in detail for the �rst time.

1.2 Purpose of the paper

We study systems in which the structure of the circuit or system depends on the dynamical response.

In the present paper, observations of behaviours in complex systems where abrupt changes in the

character of the motion (or of the time series) are observed, are presented. The possibility of sudden

changes of behaviour is probably universal in VSSs, and we examine various other systems each of

which which may be classi�ed as a VSS.

Sudden changes are sometimes termed intermittencies, and there is a classic report of a type of

intermittency, resulting in the interleaving of laminar ow with bursts of chaos, in the papers of

Pomeau and Manneville [6][7]. Here we have borrowed the term \intermittency" to describe other

kinds of sudden change in the time series; in the case of the electronic example, there are bursts of

extended chaos interspersed with periods of less extended chaos; and in the tra�c simulations, there

are sudden changes in the mean lifetime of packets on the net.
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The bursty trapping is interpreted as evolution in the system dynamics, in the sense that, as time

progresses, the dynamics change discontinuously. Since in a VSS, the system dynamics control the

structure of the system, it follows that in a system which traps, the system can be engineered to

evolve. This paper makes the suggestion that arti�cially contrived VSSs may be used as test-beds for

studies of the time-development of complex systems.

A common reaction on being presented with an abrupt change of behaviour is to seek out the

immediate cause. Often this is done with a view to removing the immediate cause and thus to smooth

out the behaviour, or to \control the chaos", in order to make it more predictable and tractable.

In many cases control of irregular behaviour is not possible; the attempts to control the chaos by

contingent changes in parameters merely serve to turn the system into a VSS which can then display

even more irregular behaviour.

The experiments we have made on the disparate systems, electronic experiments and network

simulations, and the impacting oscillator study, all give a view of such behaviour; that the irregularities

grow naturally out of the dynamics, which can occur in a closed autonomous system and not be

consequences of externally time-varying parameters.

1.3 De�nitions

For the systems considered in this paper we introduce the concept of a controlled switch. In its

simplest form, this can be a gate or CMOS switch fed by the output of a simple analogue operational

ampli�er working as a comparator, which senses the size of a voltage or current, or other measurable

quantity from a transducer. The actual circuits we had constructed to display intermittent behaviour

contain no controlled switches explicitly embedded in their implementation, but we show that they

behave isomorphically with systems which do contain such switches. That is, with some increase in

complexity, they could be replaced by circuits containing only ideal ampli�ers and controlled switches.

We emphasise that the controlled switches are introduced in addition to the other linear electronic

components; these systems are therefore not analogous to a network consisting solely of Boolean gates

or elements. The controlled switches introduce piecewise-linear non-linear properties to the system.

The piecewise-linear transfer function system simulated previously [1] was implemented exper-

imentally using the natural saturation properties of an operational ampli�er, such that when the

output reaches 12 volts, it saturates, and a further increase in input results in no further increase in

output. In other words, the \di�erential gain" has fallen to zero. Such an ampli�er may be replaced

by an \ideal ampli�er" with unrestricted input and output ranges, which is disconnected from the

output line when the input reaches the appropriate threshold. The output line is instead connected

via another controlled switch to a constant 12 volt source.

Alternatively, the various linear sections of the piecewise linear transfer function may be produced

by ampli�ers having gains A1; A2; A3 appropriate to the slopes under consideration, switched in and

out of circuit (with appropriate o�sets O1{O5) by controlled switches driven from the input. To

demonstrate the equivalence of the saturating ampli�er transfer function (Figure 4) circuit to the

VSS explicitly, Figure 1 shows a \controlled switch" version of the circuit; this version has not been

implemented as it is an unnecessary complication from a constructional point of view.

A controlled switch may be used either to alter the system state space trajectory in a discontinuous

manner, (for example, by adding an o�set to the output) or alternatively to alter the con�guration or

structure of the system.

If controlled switches are used to alter the circuit con�guration or structure, we arrive at the idea

of a variable structure system [8] or VSS. In a VSS the structure of the circuit or system is not time-

invariant, but uctuates according to the instantaneous values of the state vector. Since the state

vector in turn varies according to the structure of the dynamical system, a loop is established in which

the chaos can develop unpredictably; an example is given below showing trapping, in which the chaos

stops altogether, and in the network tra�c example the global behaviour of the state vector over a

complex system consisting of many interlinked simple VSSs is shown to evolve with time.

In digital electronics a device much used to recon�gure a system of gates is the FPGA, or Field
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Figure 1: The transfer function circuit drawn explicitly as a VSS

Programmable Gate Array. However, we are not concerned only with restructuring the topology of

deterministic digital logic, but also with altering the structure of continuous analogue systems which

may contain noise which can push the signal which controls the switch across an analogue threshold.

Thus there is the possibility of stochastic development as well as deterministic chaos in some of these

VSSs.

In the circuits and systems described here, feedback is applied around a structure containing em-

bedded controlled switches or their equivalents, as well as containing other logic or circuit components.

These equivalents are shown explicitly by means of circuit block diagrams. For the simple electronic

example, the feedback takes the form of a two-stage sample-and-hold analogue shift register, which

transfers the output value to the input on a clock pulse and then acquires the resulting new output

value for transfer on the next clock pulse. This is an iteration circuit. Such a system is a combination

of the discrete and the continuous. Iterations are discrete but the variable being iterated is continuous

with its intrinsic noise.

Thus, adaptive behaviour may be engineered in systems containing controlled switches, and in

variable structure systems generally. Such behaviour need not be cyclic, repeating exactly, but can

be emergent and result in progressive modi�cations to the system. For those people happier with

biological terminology, we have the potential to apply selection to a uctuating system, resulting in

evolution. Here, our use of the term \evolution" implies no special adaptation to \�tness for purpose"

or other measure of utility, but merely to the fact that the dynamics change as time progresses, and

such changes can sometimes happen non-reversibly.

2 VSS examples | 1: Electronic iterating circuits used to

demonstrate \crisis-induced" intermittency

A previous paper [2] introduced the behaviour of simple low-dimensional non-linear mappings under

iteration. The mappings are designed to contain small Features which we called traps [1] or snags [2].

The trapping behaviour was discussed and reported [1] theoretically and by simulation in our paper

at COMPLEX96. Here, we present the supporting experiments.

The Features give rise to the following behaviours: If the state variable enters a trap, the chaotic

time series ceases, and the system remains at a �xed point. Thus a trap is an attracting �xed point

of the system which is the end point of a chaotic transient; this can, in principle, last an arbitrarily

long time. Normally, one expects some kind of progressive approach to a �xed point. In our systems,

on the other hand, trapping is sudden, and happens without warning.
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A snag consists of a chaotic attractor embedded in the larger chaotic environment. In the one-

dimensional case considered in the earlier paper [2] , there is a small probability of entering or leaving

the snag from the larger domain. Thus the motion appears always chaotic, but \bursty" with clearly

visible (Figure 5) di�erences between the bounds of the two competing attractors. Again, the transi-

tions are sudden and happen without warning. In that paper, we attributed the bursty behaviour to

the interaction of the added noise in the simulation with the features. Below, we show clear experi-

mental evidence of true intermittency brought about by the overlap of the chaotic attractors. In the

two-dimensional experiments presented here for the �rst time, it is not so easy to picture the structure

of the 2-d features and so the experiments provide a valuable insight into the dynamical possibilities.

The term \crisis" refers to a point in the gradual change of a parameter which causes the snag to

grow or move until its structure extends beyond the feature, and ejection (Figure 8) into the wider

chaotic attractor becomes possible.

2.1 The iteration system

To recap, the basic one-dimensional building block for the two-dimensional system we have devised

consists of a two stage analogue shift register providing feedback around a transfer function circuit

which generates the mapping for the iteration. The transfer function circuit consists of an ampli�er

having di�erent gains for di�erent ranges of the input voltage. It is a piecewise-linear mapping of the

input voltage on to the output voltage. The possible values of input and output voltage occupy the

same overall span. Thus when the output is transferred to the input by the shift register, repeated

transfers do not result in the voltages going out of the overall span. This is a classic chaotic system

displaying stretching (gain size greater than unity) and folding (multiple values of input for each

output). In the implementations we have made the maximum gain has size about 3.

The mapping lies in the interval (0; 1); (0; 1) with four straight line sections. It is sketched in

Figure 2. The most important point to note is that we have placed a central square box such that the

iteration line (of unit slope) passes through diagonally opposite corners. Thus the wider square and

the small square box may both be considered to be individual autonomous one-dimensional iterating

mappings. If the motion passes from the large box to the small box, it will stay within the small box

unless there is a method of ejecting it. This can be either by the addition of noise, or by extending

the embedded Feature inside the small box so that it has sections which lie outside the small box

boundary. As the Feature is enlarged, a crisis point occurs when the size is just su�cient that the

mapping within the box touches the side. Inside the centrally placed square box of side � (which we

term The region of the Feature) is placed the Feature, which can be either a trap (�xed point or limit

cycle) or a snag (chaotic attractor). The snag can be a chaotic trap. The size of the Feature and its

region can be made arbitrarily small. The mapping is described mathematically by the following set

of equations:-

f(x) =

8>>>>>>>>>>>><>>>>>>>>>>>>:

1� 3x 0 � x < 1
3

3�3�
1�3�

(x� 1
3
) 1

3
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� �
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2
+ �

1 + 3�3�
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(x� 2
3
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2
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3

3� 3x 2
3
� x < 1

(1)

Here, F (x) is the mapping of the Feature.

2.2 Features

A trap and a snag are shown in Figure 3.
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Figure 4: The mapping leading to crisis-induced

intermittency.

If the discontinuities (turning points) in the snag overlap the boundaries of the square box, as in

Figure 4, then the chaotic motion within the snag will occasionally escape into the larger region where

it will stay until recapture.

2.3 Crisis-induced intermittency

In the case referred to in the last section, where the points of the snag just touch the sides de�ning

the region of the Feature, a crisis occurs and arbitrarily small amounts of noise can eject the system

from the Feature. If the points extend beyond the Feature, there will be a probability of escape even

though there is no added noise. The motion will then consist of periods of chaos within the Feature,

interspersed with intermittently occurring periods of motion outside the Feature. This behaviour we

call crisis-induced intermittency. The intermittency sets in suddenly at the crisis point in the case of

a hypothetical system with no added noise. However, in a real system with Gaussianly distributed

added noise, the crisis point is less well de�ned as the snag size is increased. Other forms of snag

are possible; here we have restricted ourselves to an easily implemented version. The division of the

mapping into the Feature region and the wider attractor allows design of various kinds of snag, which

when they extend beyond the Feature allow for adjustable probability of escape.

2.4 Simulation

Simulations of the trapping process were given in the COMPLEX96 paper [1]. To follow the evolution

of the 1-dimensional system dynamics, in the presence of added noise, computer simulations of the

iterating system were made with arti�cial additional Gaussian noise, gn, having zero average, and

standard deviation � The mathematics of the statistics of times between capture and release events

have been reported [2].

2.5 Circuits

It was thought that a two-dimensional version of the simple iterating circuit should be investigated.

Simulations are a little more di�cult to think about so it was decided to conduct experiments. The

circuits were designed and constructed from operational ampli�ers, having di�ering adjustable gains,
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Figure 5: Time series of 1-d crisis-induced inter-

mittency

Figure 6: Time series of one channel of a 2-d crisis-

induced intermittency

and with di�ering output ranges before saturation. In each of the two channels, one for each dimen-

sion, there were three saturating operational ampli�ers whose outputs were combined in a summing

ampli�er. Control of the gains and the sizes of the Features was by ten-turn accurate potentiometers

with precision dials to allow parameters to be recorded and reset. It was arranged to have o�set

controls in each channel for the position of the Features.

Two two-stage sample-and-hold circuits were used to transfer the outputs of the transfer function

generator back to the input, on clock pulses provided by an external generator. A sum and di�erence

rotation matrix circuit was used to mix the two channels thus generated, for the 2-dimensional exper-

iments reported below. In order to keep the range of the input voltage and the range of the output

voltage commensurate, the matrix circuits add and subtract 0.5 of the outputs of the individual chan-

nels. For a true \area preserving" matrix we would require a rotation such that 0.707 of the outputs

were taken to add and subtract. Our matrix therefore rotates and contracts, by an area amount of a

factor 2. However, since the individual gains of the transfer function circuits are close to magnitude

3, a small area expands by a factor 9 (3 in x times 3 in y) on passing through the transfer function

part of the system so the loop area gain is 9/2. Thus we can use this method to construct a chaotic

system of arbitrarily large dimension. This is best implemented by using the transfer function circuit

sequentially. In a 4-dimensional system one would store a 4-vector at input and output in individual

4-wide transfer and hold circuits.

2.6 Experiments

Five oscilloscope photographs of experiments which extend the 1-dimensional simulations reported

[1][2] previously are presented below. It is important to con�rm the results of chaotic simulations by

real experiment, as it is not always clear what the e�ects of noise and imprecisions in the real electronic

implementations will be. Therefore we have gone to some trouble to produce this experimental

evidence to support our previous \thought experiments" and simulations on this system.

First, Figure 5 shows an experimental one-dimensional time series of crisis-induced intermittency

from a snag that just extends beyond the region of the feature. This is a quite distinct phenomenon

from the \noisy trapping" simulation presented [1] earlier, but nevertheless looks very similar. The

release from the chaotic trap does not require added noise in this case. Since a single transfer function

generator and shift register is used, it is noticeable that the snag recaptures the motion very quickly

after its escape. This happens because the proportion of system space occupied by the snag is not

particularly small.

Second, Figure 6 shows the time series for the 2-dimensional system, consisting of the two shift

registers, the two transfer function generators, and the rotation matrix circuit. Here we observe that

it takes signi�cantly longer for the snag to recapture the motion. This is because the snag of size �

has area �2 which is of second order of smallness in the 2-d system. We also notice a phenomenon of

incomplete escape from the snag which happens from time to time. Here \experimentalist's license"
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Figure 7: Motion inside a 2-d snag Figure 8: leakage from a snag in crisis

Figure 9: A 2-d snag and the wider attractor; intermittent behaviour

has been used to adjust the overlap of the snag with the region of the feature in order to capture a

telling picture. Size and o�set controls have both been used. It is in this kind of example that the

superiority of direct experiment over simulation is demonstrated.

Next, we show a photo of the average position in the 2 dimensions (Figure 7) for the case of

system motion wholly contained within a 2-dimensional snag. Here, the snag has no part which

extends beyond the region of the feature.

Next, a photo of the escape (Figure 8) from the 2-dimensional snag whose size and o�set have

been both adjusted to provoke a crisis. Incomplete escape can be seen, as can the nearby motion on

part of the wider attractor.

Fifth and last, a photo (Figure 9) showing the time-average position of the 2-dimensional motion

encompassing the entire space which contains both the intermittent snag and the wider attractor.

If one can imagine the dynamics behind this picture one gets a good idea of what a crisis-induced

intermittency looks like in more than one dimension.

3 VSS examples | 2: Two-centre and impacting systems

Experiments have been made on an electronic implementation of a two-centre harmonic oscillator.

This oscillator implementation is shown in Figure 10 and consists of a simple two-integrator loop with

damping, which models a simple damped linear second order system. There is a re�nement in that

the o�set of the centre of the system is switched from +X to �X when the displacement variable

x passes downwards through zero. The opposite happens when the displacement returns and passes

upwards through zero.

This two-centre system is very similar to a damped impact oscillator, where the velocity changes

discontinuously when the displacement reaches the wall position X . The impacting system models a

mass-spring-damping system where the mass bounces elastically on a rigid wall. There is a complete

isomorphism between the impacting system, and an adaptation of the two-centre system in which the

driving function is inverted every time the displacement passes through zero. Thus we have two more
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Figure 10: A two-centre VSS equivalent circuit diagram

VSS circuits to consider; intermittency has been observed in computer simulations and theoretical

studies of the impact oscillator [12].

When, in the impacting system, the velocity discontinuously reverses, the time development of

the linear part of the motion may be regarded as being suddenly advanced. This is not an exact

modelling, but it explains the observation that when the drive frequency is adjusted to lie a little

below the non-impacting resonant frequency of the system, the impacts can keep the motion more in

phase with the drive and the phase plane portraits are on average larger than they would be if the

wall were moved away to larger X. Thus the impacts are sustained until, happenchance, the chaotic

uctuations lead to an impact or impacts being missed, and the motion collapses onto the limit cycle

of the linear system.

Since the two-centre system only di�ers from the impacting system by lacking an inversion of the

drive, the phase relationship in the case of the two-centre system is reversed, and the orbits are, on

average, larger for the drive frequency a little above resonance.

Thus we see in Figure 11 a time series development in which the chaotic uctuations of the two-

centre system eventually result in the subsequent zero-transitions not occurring and the system then

falls onto a limit cycle (see the phase plane portrait for this system in Figure 12) on one side of the

displacement origin at x = 0. In the analogous case of the impact oscillator, this is seen when the

orbits no longer cross the wall position, and impacts then cease.

This behaviour is a classic case of trapping in a VSS. By adjusting the amplitude of the non-

impacting limit cycle, it can be arranged for the average time to trap to become very large. The

experimental photo shown in Figure 11 was the tenth exposure in a continuous sequence during which

the system did not trap. The time span across the photo is 35 seconds; in this case the system took

about 10 minutes to trap at an angular drive frequency of 10 radians per second. The size of the

limit cycle is about 3/4 of the amplitude at which switching occurs. Thus we see that trapping can

be arranged to be improbable; what is certain however is that for these conditions, this system will

always trap if one waits long enough.

4 VSS examples | 3: Network dynamics - computer simula-

tions

Here we present an example of bursty statistics from a di�erent class of VSS in the area of irregular

tra�c ows on regular networks. First we briey recap the system [3][4]. A square grid of N by N
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Figure 11: Trapping in the system of �gure 10;

time series. The axes are time, horizontal; dis-

placement, vertical.

Figure 12: The phase plane portrait of trapping

in the two-centre system. The axes are displace-

ment, horizontal; velocity, vertical.

cells is scanned from the NW corner to the SE corner in a raster (or other sequence) by a token,

which alights on each cell in turn and enables development to occur. The grid is populated by packets

numbering a fraction f of the N2 cells; the packets have set out from transmitters on the W and

S boundaries to make their way to receivers at the E and N boundaries respectively. The fraction

f may be set by the program. When a receiver collects a packet it immediately returns it towards

the transmitter whence it came without removing it from the grid. Thus f is a true constant of the

motion and does not change. Packets contain a record of their intended destination. There can be

only a single packet in a cell; thus a packet cannot move into an occupied cell.

If the token alights on a cell containing a packet, the packet attempts to move in the direction

of the receiver, or as close to that as possible according to a simple protocol (see Figure 13). If

it cannot move in any direction it stays put. The token then passes to the next square. This is

the only contingent protocol in the system, in the sense that what happens next is dependent on

the arrangement of packets in the neighbourhood of the token cell, and also on the direction to the

intended receiver. The protocol may easily be implemented in hardware by a VSS, as can be seen in

the �gure (Figure 13). Here, the individual cell sites contain the hardware switches as shown, and

provide the protocol for onward routing of the itinerant packets. It would also be possible, at some

increase in complexity, to regard the itinerant packets as having hardware attached which determines

their onward paths. The concepts developed schematically in the �gure provide, in our opinion, a �rm

demonstration that our data network is a true variable structure system, in exactly the same sense as

in the other examples.

Here, the controlled switch selects each of the neighbouring cells in turn, in the order selected

by the global variable which has been set by the programmer. On �nding the �rst empty cell, the

switch moves the packet into the empty cell leaving the source cell vacant. We have not gone into the

precise details of the electronics needed to do this; nevertheless it is a true variable structure hardware

arrangement.

So the network study is a simulation of another kind of variable structure system. The state

vector, of dimension fN2, consists of the positions and attributes of the pattern of populated squares

on the grid. It evolves with time, and a single measure of the time development is taken to be the

average lifetime of all the packets on the net since the last time they were reected from a receiver.

It is this variable which is plotted on the vertical axes in Figure 14, Figure 15, and Figure 18. The

packets have to move in one of the directions set by the protocol, which is perfectly deterministic.

However, the system is su�ciently large [3] that individual global (as opposed to local patterns in the

region of the token) patterns will most probably never reappear in reasonable amounts of runtime.

Thus the pattern and attributes of the occupied cells governing the development of the state vector

between token passes almost certainly never repeats. It is truly variable and chaotic, and is a direct

consequence of the large number of possible values of the state vector. The variable structure is also

represented by the global patterns of packets on the net, a�ecting the development directly. The
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Figure 13: The local VSS for the network protocol

global development is the aggregate of N2 decisions set by the individual VSS as described above.

Earlier papers [3][4] have investigated simple models of the network dynamics. Preliminary investi-

gation of the phenomena reported there shows that tra�c ows on the model network, whose structure

is static and which supports constant tra�c demand, displays bursty and intermittent behaviour for

certain values of f ; a further example of the statistically self-similar time series produced is shown in

Figure 14.

Another type of behaviour in this system is approximately periodic, showing cyclic oscillations

between free ow and blocking behaviours. An example of the time series is shown below (Figure 15).

Clusters of packets form and dissolve with time, resulting in a global variable structure of clustered

packets which impedes the tra�c ow. This is a kind of collective variable structure which has arisen

out of the aggregate of the behaviour of all the individual controlled switch decisions described above

for the individual token cells.

This is illustrated in Figure 16 and in Figure 17 which show, respectively, clustering (in a region of

impeded ow) and less-impeded ow, with the points on the time series diagram in Figure 14 labelled

with arrows.

An even more striking example of clumping and free ow is provided in the time series (Figure 18),

together with the blocked packet distribution (Figure 19) and the subsequent unblocked packet dis-

tribution (Figure 20), for a 30 by 30 grid with 39 percent of the sites occupied by packets. The

qualitative behaviour seen here is universal and does not depend on details of the size of the grid or

the position of the receive and transmit sites. We always see critical levels of loading at which bursty

behaviour or periodic behaviour sets in.

It is interesting in this example that local VSS behaviour has resulted in a kind of stochastic variable

structure across the network. We are observing collective behaviour of the dynamics resulting in global

variable structure, that we did not set out with the intention of engineering when we wrote the protocol.

Of course, there are many conditions for which the intermittent behaviour is not observed and the

global VSS does not emerge; nevertheless the local implementation of the VSS always pertains.
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Figure 14: Intermittent tra�c blocking due to

network dynamics

Figure 15: Cyclic tra�c blocking on the network

at a di�erent load factor to that in �gure 14

Figure 16: Packet bunching impeding the tra�c

ow at a peak in �gure 15

Figure 17: Less packet bunching at a point of

easy data ow at a minimum in �gure 15

Figure 18: Packet blocking statistics, detail on a

30 by 30 grid with 39 percent loading

Figure 19: Packet bunching at a maximum la-

tency (packet blocking) in �gure 18.
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Figure 20: The normal packet distribution for unblocked ow in �gure 18.

5 Discussion

The variable structure scenario is of wide applicability. One might argue that many non-linear chaotic

dynamical systems could be cast in the form of a VSS. While it is possible to construct a regularly

behaved VSS, this VSS scenario does give us a way of approaching the engineering and construction

of arrangements for producing irregular and bursty behaviour. An important and increasingly studied

VSS is the Cellular Neural Network [13] described by Chua and Yang in 1988. This has important

applications to signal processing and arti�cial vision, among others. Chua has suggested that CNNs

are a test bench for the evolution of complexity, which he suggests emerges \on the edge of chaos"

when the CNN is set up correctly. The non-linear elements are linked together by coupling and

switching elements under software control. Various training algorithms are suggested for particular

tasks. VLSI CNN chips are available and would be good candidates for studying the evolutionary

behaviour of VSSs.

As we have seen, iterating electronic circuits, non-linear dynamical systems, and recursive network

algorithms provide three di�erent kinds of implementation of a VSS. In the case of the two-centre sys-

tem with its integrators, the delay and memory through the integrator circuits provides the equivalent

of the data propagation through the sample-and-hold circuits of the iteration system. In the case of

the network example, the previous structure of the cells is stored in computer memory and dictates

what happens on the subsequent token pass. Thus, to these authors at least, all these examples are

transparently equivalent.

There is a good discussion of the stability of chaotic processes, and of the behaviour due to interior

crises of the attractor in dynamical systems, in a paper by Kautz [14]. He says \when the unstable

periodic orbit de�nes an interior basin, increasing � beyond �c simply allows the attractor to expand

into other parts of the basin of attraction." At a critical value �c of the bifurcation parameter �,

the chaotic attractor collides with an unstable periodic orbit. Now it is a simple matter to arrange,

electronically, for the parameter � to depend on a measure of the average size of the chaotic trajectory

which is visiting a part of the attractor, and thus to engineer evolution.

There is also a sense in which simple electronic circuits, and their simulations, which rely on perfect

diodes for their non-linear properties, may be modelled by VSS. A good example may be found in the

two coupled nonlinear LC circuits of Wada [15] et al, in which they observe what they term blowout

bifurcation and bursty behaviour similar to our observations, in their Figure 9.

Other examples may come to mind. For example, it is possible that the unpredictable and irregular

behaviour of certain classes of computer software may be interpreted as being due to the variable

structure in the processes running on deterministic hardware; such processes may interact and retain

memory of their most recent invocation in a complex and unpredictable way, and be modellable in

terms of a VSS in the software domain. The structure of the software (the bit-image in machine

memory at startup) depends on the dynamical history such that even if the user tries to run the

software on two successive occasions in exactly the same way, the bit image has changed, and on

subsequent runs the behaviour is di�erent.
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6 Conclusions

Three di�erent electronic systems have been studied either in simulation, or experimentally, or both.

They all may be made to display sudden changes of the chaotic motion which we have interpreted in

the light of the Variable Structure model. It is just possible that by �nding universal properties such

as this in disparate but structurally similar systems, ideas for the engineering of complex systems to

either display or avoid such behaviour may emerge. It may even be possible to engineer such systems

to display emergent or evolutionary properties.
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Abstract

We aim to clarify several fundamental terms used in fractal analysis and examine how the

estimates of the fractal dimension can be made clearer to best serve as descriptive indices. The
problem is essentially one of clarifying the semantics of the term `fractal', since the syntax of
calling something `fractal' is often used with little regard to the principles underlying scaling

theory. Towards this aim we discuss the use of language and the necessity to establish a linguistic
base that serves as the template for communication across di�erent disciplines.

1 Introduction

Our position deals with the use and understanding of language from a pragmatic standpoint. That is,

we discuss the misconception of some vital de�nitions and terms in the �eld of fractal analysis. The

paper is not about how we come to know but rather how we should communicate in order to gain

knowledge and understanding. We o�er practical solutions by identifying several terms associated

with fractal analysis that need to be clari�ed. These terms, such as `fractal' have been socialised and

come to mean something in the literature that may be misleading and from an applied perspective not

useful. Further, we clarify steps in the fractal analysis procedures, concentrating on the box-counting

method as variations in sampling and preparing images for analysis and the analysis procedure itself

can have non-trivial e�ects on the estimation and interpretation of D[3, 8, 12, 16, 19].

Applications of fractal analyses have been extensively used in diverse scienti�c, sociological and

philosophical areas of research. Despite this large volume of literature, there is still a lack of clarity

regarding the meaning of the terms used this �eld and therefore inferences drawn from the results are

questionable[3, 18, 12, 19].

The concept of `fractal scaling' is revolutionary but not new in that it o�ers a means to describe

how things `are' in terms of the object's scaling characteristics[11, 21]. What we mean here is, that

D quanti�es `something' in terms of shape, texture, size, number, colour, repetitiveness, similarity,

randomness, regularity, heterogeneity, or any other adjectival descriptions that are commonly used

to de�ne the properties of some object or event. These descriptions can not be quanti�ed using

Euclidean geometry that idealises form. The properties mentioned above reect the complexity of the

object or event. Fractal analysis has provided a means of quantifying these properties as a measure

of complexity or scale-dependency of the pattern. This is not to say that fractal analysis is the

only means of quantifying complexity. Other analytical methods include Fourier analysis, fractal

harmonics, polygonal harmonics and wavelets[13, 26]. In principal, fractal analysis should improve

on the description of morphological features compared to conventional shape parameters. Common

examples from the literature include heart rate irregularities, grazing e�ects on pastoral lands or stock

market uctuations[2, 16, 17]. It is our observation however, that conclusions drawn from fractal

research remain at best tentative | with some research areas o�ering more conclusive results[1, 4].
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The lack of conclusive results can, in many cases, be explained by the apparent lack of a linguistic

base, that is a sound description of fractal theory and its relationship to the associated analysis proce-

dures. Fractal research and discussion is characterised by the repetition of de�nitions and procedures

that were intended to be vague[17].

Fractal analysis measures length as a process and therefore is de�ned as a limit which allows the

image (if fractal) to be analysed in arbitrarily high resolution[22]. In practice any object is represented

by a �nite data set and the measurement is restricted to a �nite magni�cation range. The image can

be interpreted by D if it is assumed that the �nite data set of the image reects a fractal set and

is self-similar[20]. If it is assumed that the image does not reect an ideal fractal in a statistical

sense (this is the case for biological images), than interpreting the image using D is meaningless. The

fractal dimension may still be useful though by using it as a quantitative parameter that indicates

complexity or the scale dependence of a pattern[14]. This fundamental concept is not made clear in

the literature where D is taken to indicate fractality[19]. Communication becomes meaningful if all

involved understand the terms. That is a transparent linguistic base exists.

2 Communication

A fractal set is a set in metric space for which the Hausdor�-Besicovitch dimension D >

topological dimension DT .[17, p361]

The above quote is the most often quoted sentence found in journal articles to describe fractals,

even though Mandelbrot states, on the next page, that this de�nition is rigorous, but also tentative.

The de�nition is an example of communication that requires linguistic literacy as it requires an

understanding of what is meant by metric space, Hausdor� dimension and topological dimension.

It does not help in the understanding of fractal theory nor how this relates to fractal analysis. It

would be more appropriate to point out that the de�nition applies to theoretical fractals and may

be totally useless in practice if the image to be analysed does not reect, albeit even statistically, a

fractal set. In practice, the estimate of D quanti�es scale invariance over a limited scaling range and

does not indicate whether the image is fractal or not.

We suggest that communication occurs at di�erent levels and that the literature can be divided

into three main categories.

1. Theoretical mathematical research (those in the know who already posses a solid knowledge

base in fractal and scaling theory). That is, those to whom the above de�nition by Mandelbrot

means something quite concrete.

2. Applied science research such as the biological and social sciences (those with a solid knowledge

base in other disciplines and using fractals).

3. Methodological analysts (those that develop tools for fractal analyses and aim at describing

these clearly).

Once this division of the scienti�c/professional community is established it becomes obvious that

a type of professional socialisation has taken place. Speci�c language used by each group establishes

an identity within this group and marks it o� as a specialist domain of knowledge and expertise[5].

To apply fractal analysis successfully it is important to obtain fractal literacy. The lack of clarity

lies in the fact that many in the �rst category, being entrenched within a speci�c linguistic boundary

and possessing fractal literacy, �nd it hard to communicate the necessary information to researchers

in a di�erent research �eld with a di�erent subject literacy. Papers in the second category should

contain research results obtained by applying fractal analysis correctly. As there are no guidelines for

the `correct' use of fractal analysis this is not possible and leads to errors in interpretation[3, 6, 19].

Fundamental concepts are often explained with little consideration of the diverse linguistic base of the

audience and reect the accepted meaning of terms within a specialised group. It is our assertion that
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Figure 1: The Koch curve displaying the iteration process over several generations.

category 1 researchers have an obligation to disseminate their work to as wide an audience as possible.

Signi�cant studies in fractal theory have already occurred, yet such cumulative e�orts must at some

point become mainstream knowledge for all scienti�c disciplines, and eventually common knowledge.

For language to be a resource[10], with a potential to create meaning, it is important that novices

are able to obtain the appropriate linguistic skills. Procedures used to determine the fractal dimension

of images need to be made explicit. Some aspects of fractal analyses are like a black box in that one

obtains a program, loads the image and obtains a fractal dimension. For the fractal dimension to be

meaningful, the black box needs to be opened.

3 A Language Base for Novices

What then is a fractal? Fractals are characterised by a scaling law that relates two variables: the

scale factor and the object being measured. This scaling relationship is described by a power law,

which in turn describes the inherent physical attributes of the object being analysed[15, 27]. The

exponent of the power law refers to the dimension. From our fractal linguistics perspective, fractal

images are strictly limited visualisations of recursive equations that cannot be represented to the limit

as an image on a computer. The Koch curve shown in Figure 1 is not a fractal, as the iteration level

is not depicted at the level of in�nity and has been referred to as prefractal[7].

A fractal object is the result of repeated transformations of a geometrical �gure that leads to self-

similar patterns. This self-similarity is a function of the scale invariance observed within the pattern

between successive transformations. Viewing a fractal would therefore reveal identical patterns at

di�erent observation scales. In fact an important de�nition of fractals is that this self-similarity

continues inde�nitely.

Biological forms are not characterised by identical patterns at di�erent scales and are statistically

scale-invariant over a limited range[23]. Therefore the statement that a biological structure is fractal

or not fractal is meaningless[19, 24]. The feature that makes fractal analysis interesting is that self-

similarity can be described by a scaling function such as the power law. Representations of biological
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objects, irrespective of whether they are represented as outlines, stick models or silhouettes can be

analysed for their global scale-invariance and quanti�ed by the fractal dimension. At this stage many

researchers may not even have considered whether an image is fractal or whether, for their purposes,

it is even important that the image is fractal[20]. If it is a fractal or a representation of a type of

fractal, then what type of fractal is it[20]? If the fractal dimension is calculated, which of the ten plus

alternatives of the general fractal dimension will it be[25, 27, 28, 29]? Referring back to the work of

Richardson[21] shows that his aim was to demonstrate a relationship between the measuring scale and

the attribute of the image being measured. D is then the parameter that quanti�es this relationship.

Thus whether the object is fractal or not may not have any bearing on the analysis of the object.

4 Conclusion

Language can be viewed as a resource for creating meaning[9, 10]. What a novice needs to do is

construct a linguistic system that enables them to participate in the scienti�c debate. This is achieved,

in our case, by helping novices to appropriate the fractal linguistic system. Speci�cally, knowledge

needs to be encoded in a language that is understandable when transmitted from a specialist source.

It should not be necessary for the learner to �rst decode language in order to learn anything from

it. Our paper represents a start in this direction. Information must be transmitted in many di�erent

ways to incorporate di�erent learners. Learners on the other hand must be able to freely communicate

their thoughts as they attain the speci�c linguistic literacy.

We explored the meaning of the descriptor `fractal' and one of its characteristics | `similarity'.

Our aim was to demonstrate that an understanding of how language is used in this specialised �eld

reects on to the application and conclusions drawn from the research. In this respect, we discussed

some of the considerations necessary when choosing an algorithm that determines the complexity of

an image.

Acknowledgments

MDW would like to acknowledge the support of the National Science Foundation, Environmental and

Ocean Systems Program (Grant No. BES-9312825) and of the principle investigator, Dr R.I. Dick.

The work cited here was part of MDW's Masters research.

References

[1] D. Avnir, O. Biham, D. Lidar, and O. Malcai. Is the geometry of nature fractal? Science, 279:39,

1998.

[2] J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West. Fractal Physiology. Oxford UP, Oxford,

1994.

[3] G.M. Bernston and P. Stoll. Correcting for �nite spatial scales of self-similarity when calculating

the fractal dimensions of real-world-structures. Proc. R. Soc. Lond. B., 264:1531{1537, 1995.

[4] A. Bunde and S. Havlin. Fractals in Science. Springer, Berlin, 1994.

[5] B. Cambourne. Teaching literacy at the post-primary level: Is it part

of the secondary teacher's role? Teaching & Learning On-line, 1998.

http://hsc.csu.edu.au/tlo/journal/discuss/brian cambourne/.

[6] F. Caserta, W.D. Eldred, E. Fernandez, R.E. Hausman, L.R. Stanford, S.V. Bulderev,

S. Schwarzer, and H.E. Stanley. Determination of physiologically characterized neurons in two

and three dimensions. J. Neurosci. Meth., 56:133{144, 1995.



148 Is There Meaning In Fractal Analyses?

[7] J. Feder. Fractals. Plenum, New York, 1988.

[8] E. Fernandez, W.D. Eldred, J. Ammerm�uller, A. Block, W. von Bloh, and H. Kolb. Complexity

and scaling properties of amacrine, ganglion, horizontal and bipolar cells in the turtle retina. J.

Comp. Neurol., 347:397{408, 1994.

[9] J.P. Gee. What is literacy? In P. Shannon, editor, Becoming Political: Readings and Writings

in the Politics of Literacy Education, pages 21{28. Heinemann, Portsmouth,NH, 1992.

[10] M.A.K. Halliday. Language education: Interaction and development. the notion of context in

language education. In Proceedings of the International Conference held in Ho Chi Minh City,

Vietnam, 1991.

[11] F. Hausdor�. Dimension und �au�eres Ma�. Math. Ann., 79:157{179, 1919.

[12] H.F. Jelinek and E. Fernandez. Neurons and fractals: how reliable and useful are calculations of

fractal dimensions? J. Neurosci. Meth., 81:9{18, 1998.

[13] C.L. Jones. Image analyis of fungal biostructure by fractal and wavelet techniques. PhD thesis,

Swinburne University of Technology, 1997.

[14] N.C. Kenkel and D.J. Walker. Fractals in the biological sciences. COENOSES, 11(2):77{100,

1996.

[15] H. Lauwerier. Fractals: Images of Chaos. Princeton University Press, New Jersey, 1991.

[16] C. Loehle and B. Li. Statistical properties of ecological and geological fractals. Eco. Mod.,

85:271{284, 1996.

[17] B.B. Mandelbrot. The Fractal Geometry of Nature. W.H. Freeman, N.Y., 1983.

[18] J.D. Murray. Use and abuse of fractal theory in neuroscience. J. Comp. Neurol., 361:369{371,

1995.

[19] J. Panico and P. Sterling. Retinal neurons and vessels are not fractal but space �lling. J. Comp.

Neurol., 361:479{490, 1995.

[20] P. Pfeifer. Is nature fractal? Science, 279:784, 1998.

[21] L.F. Richardson. The problem of contiguity: an appendix to statistics of deadly quarrels. General

Systems Yearbook, 6:139{187, 1961.

[22] K Sandau and H. Kurz. Measuring fractal dimension and complexity | an alternative approach

with an application. J. Microscopy, 186(2):164{176, 1996.

[23] M. Schroeder. Fractals, Chaos and Power Laws. W.H. Freeman, N.Y., 1991.

[24] O.R. Shenker. Fractal geometry is not the geometry of nature. Stud. Hist. Phil. Sci., 25(6):967{

981, 1994.

[25] H.E. Stanley and N. Ostrovsky. On Growth and Form: Fractal and Non-Fractal Patterns in

Physics. Nijho�, Dordrecht, 1986.

[26] Z.R. Struzik. From Coastline Length to Inverse Fractal Problem: the Concept of Fractal Metrology.

PhD thesis, University of Amsterdam, 1996.

[27] H. Takayasu. Fractals in the Physical Sciences. Manchester University Press, Manchester and

New York, 1990.



Herbert F. Jelinek, Cameron. L. Jones and Matthew D. Warfel 149

[28] M.D. Warfel. http://www.cee.cornell.edu/~mdw/index.html.

[29] M.D. Warfel. Characterization of particles from wastewater and sludge treatment facilities by

size and morphology. Master's thesis, Cornell University, 1998.



150 A Categorical Representation of the State Transition Graph of Finite Cellular Automata

A Categorical Representation of the State Transition Graph of Finite
Cellular Automata

Jung-Hee, Park

Department of Computer Science,

Yangsan College,

Kyungnam 626-800, South Korea

PJH718@Chollian.net

Hyen-Yeal, Lee

Department of Computer Science,

Pusan National University

Pusan 609-735, South Korea

hylee@hyowon.cc.pusan.ac.kr

Abstract

One-dimensional cellular automata A(m), B(m), C(m) and D(m) with two states (0 and 1)
and four di�erent boundary conditions such as 0-0, 0-1, 1-0 and 1-1 respectively are studied on

the self-reproduction of the state transition graph by the categorical representation. The simple
recursive formulae of the �fteen rules such as rules 0, 3, 12, 15, 48, 51, 60, 192, 195, 204, 207,
240, 243, 252 and 255 among 256 rules were found, which are used to self-reproduce the state

transition graph. It is also found that these �fteen rules satisfy that A(m), B(m), C(m) and
D(m) are all equal or A(m) is equal to B(m) and C(m) is equal to D(m). Moreover, such �nite
cellular automata are classi�ed according to the recursive formulae found.

1 Introduction

Cellular automata are discrete dynamical systems of simple construction but complex and varied

behaviour. First introduced in 1948 by von Neumann[1] as potential models for biological self-

reproduction, cellular automata have since been used as mathematical tools for studying a wide variety

of problems. Attempts to �nd the recursive formulae which can self-reproduce the state transition

diagram of the nearest-neighbor cellular automata with two states (0,1) and four di�erent boundary

conditions, which will be de�ned in section 2, in an algebraic method have been also made with

particular tree and cycle expressions[2, 3, 4, 5]. However, many rules have still remained unexplored

since it is not easy to �nd the recursive formulae of even one-dimensional cellular automata. In this

paper it has been tried to �nd the recursive formulae for such automata by categorical representation

with particular morphisms �;  ; � and � which will be de�ned in section 3[6, 7, 8]. The aim of this

study is to self-reproduce the state transition diagrams of �nite cellular automata from the cell size 0

(empty string) to given cell size m when the rule number R and the cell size m are given. The process

which the state transition diagrams self-evolve when the cell size increases can be shown visually by a

simple programming with the recursive formulae. It is also useful to identify the dynamical behavior

of cellular automata. As a result it is found that the state transition graphs for all A(m), B(m), C(m)

and D(m) of 15 rules such as rules 0, 3, 12, 15, 48, 51, 60, 192, 195, 204, 207, 240, 243, 252 and 255

among 256 rules can be self-reproduced by simple recursive formulae. In addition, the 256 rules are

classi�ed according to the patterns of the recursive formulae for generating the state transition graph.

The paper is organized as follows. In section 2, we will denote a cellular automaton (Xm; �
m;R
a�b

) and

de�ne the cellular automata A(m), B(m), C(m) and D(m) with four di�erent boundary conditions

such as 0-0, 0-1, 1-0 and 1-1, respectively. Section 3 de�nes the category CA(Xm) of the evolution

system of �nite cellular automata and four particular morphisms �;  ; � and �. Section 4 proves the

recursive formulae of A(m), B(m), C(m) and D(m) for rule 3 and section 5 classi�es the 256 rules

of one-dimensional cellular automata according to the patterns of the recursive formulae. Section 6

concludes this paper.
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��
��
11001 ��

��
00010-

Figure 1: A part of the state transition diagram in the case of m=5 and R=3.

2 Finite Cellular Automata with Four Di�erent Boundary

Conditions

In this section, we will consider a cellular automaton (Xm; �
m;R
a�b

) and de�ne the �nite cellular automata

A(m), B(m), C(m) and D(m) with four di�erent boundary conditions.

One-dimensional cellular automaton for any rule R, whose boundary condition is a-b (for a and b

take 0 or 1) and the cell size (namely the size of the string at a site) is m, is a dynamical system

(Xm; �
m;R
a�b

). Here Xm is the set of states for the cellular automaton with cell size m ,i.e. Xm =

fx1x2 � � �xm�1xm j xi 2 f0; 1gg and X0 = � (empty string) where m is zero or a positive integer and

the state transition function �
m;R
a�b

is then de�ned in de�nition 2.1.

De�nition 15.1 The state transition function �m;R
a�b

is de�ned as �m;R
a�b

: Xm ! Xm such as

�
m;R
a�b

(x1x2 � � �xm�1xm) = fR(ax1x2)fR(x1x2x3) � � � fR(xm�1xmb) (1)

where fR is the triplet local transition function governed by the rule R for one-dimensional cellular

automata.

For example, let us consider for rule 3. If the boundary condition is 0-0 and the cell size is 5, for

the string 11001 2 X5

�
5;3
0�0

(11001) = f3(011)f3(110)f3(100)f3(001)f3(010) (2)

By eq.(4) in section 4, the right hand side of eq.(2) becomes 00010. In other word, the string 11001

at a site is transmitted to the state string 00010 as shown in Figure 1.

De�nition 15.2 De�ne the cellular automata A(m), B(m), C(m) and D(m) with four di�erent

boundary conditions such as 0-0, 0-1, 1-0 and 1-1 respectively for each rule R as following:

A(m) = (Xm; �
m;R
0�0

);

B(m) = (Xm; �
m;R
0�1

);

C(m) = (Xm; �
m;R
1�0

);

D(m) = (Xm; �
m;R
1�1

)

Here A(0), B(0), C(0) and D(0) are empty graphs.

3 The Categorical Representation of Finite Cellular Automata

In this research, the recursive formulae which can self-reproduce the state transition graph of the

cellular automata (Xm; �
m;R
a�b

) from the previous system (Xm�1; �
m�1;R
a�b

) for each rule R are founded.

With this, the self-evolution system of �nite cellular automata when the cell size m increases can be

made.
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De�nition 15.3 The category CA(Xm) of the evolution system of �nite cellular automata has as

objects

maps �
m;R
a�b

: Xm ! Xm which we say dynamical system (Xm; �
m;R
a�b

). Its morphisms are maps

h:(Xm�1; �
m�1;R
a�b

)! (Xm; �
m;R
a�b

) which satisfy the commutative diagram:

Xm�1

�
m�1;R

a�b! Xm�1

# #
Xm

�m:R
a�b! Xm

Now, we will de�ne some morphisms �;  ; � and � to express the recursive formulae which can

self-reproduce the state transition graph of each cellular automata rule. Let X0
m; X

1
m be the set of

states on cellular automata with cell size m, satis�ed with

Xm = X0
m [X1

m and X0
m \X1

m = ; (3)

where

X0
m = f0x1x2 : : : xm�1 j x1x2 : : : xm�1 2 Xm�1g

and

X1
m = f1x1x2 : : : xm�1 j x1x2 : : : xm�1 2 Xm�1g

Then the maps 0 and 1 are de�ned as

0 : Xm�1 ! X0

m
: x1x2 : : :xm�1 ! 0x1x2 : : :xm�1;

1 : Xm�1 ! X1

m
: x1x2 : : :xm�1 ! 1x1x2 : : :xm�1

De�nition 15.4 A morphism � is de�ned as � : (Xm�1; �
m�1;R
a�b

) ! (X0
m; �

m;R
a�b

) which satis�es the

commutative diagram:

Xm�1

�
m�1;R

a�b! Xm�1

0 # # 0
X0
m

�
m;R

a�b! X0
m

This diagram means the following: The strings which pre�x 0 to the strings in Xm�1 are trans-

mitted to the strings which pre�x 0 to the images of Xm�1 by �
m�1;R
a�b

.

De�nition 15.5 A morphism  is de�ned as  : (Xm�1; �
m�1;R
a�b

) ! (X1
m; �

m;R
a�b

) which satis�es the

commutative diagram:

Xm�1

�
m�1;R

a�b! Xm�1

1 # # 0
X1
m

�
m;R

a�b! X0
m

De�nition 15.6 A morphism � is de�ned as � : (Xm�1; �
m�1;R
a�b

) ! (X0
m; �

m;R
a�b

) which satis�es the

commutative diagram:

Xm�1

�
m�1;R

a�b! Xm�1

0 # # 1
X0
m

�
m;R

a�b! X1
m
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De�nition 15.7 A morphism � is de�ned as � : (Xm�1; �
m�1;R
a�b

) ! (X1
m; �

m;R
a�b

) which satis�es the

commutative diagram:

Xm�1

�
m�1;R

a�b! Xm�1

1 # # 1
X1
m

�
m;R

a�b! X1
m

4 The Recursive Formulae for Generating the State Transi-

tion Graphs

The recursive formulae for self-generating the state transition graph of each cellular automata rule

are shown in this section. In particular, the recursive formulae of rule 3 are proved. The triplet local

transition function for rule 3 is as follows:

111 110 101 100 011 010 001 000

# # # # # # # #
0 0 0 0 0 0 1 1

(4)

In the following theorem, we want to show that A(m) for rule 3 is partitioned by the digraphs

derived by A(m� 1) and C(m� 1). Thus, for convenience, we consider � and  as following:

� : (Xm�1; �
m�1;R
0�0

)! (X0
m; �

m;R
0�0

) (5)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
0�0! Xm�1

0 # # 1
X0
m

�
m;R
0�0! X1

m

and

 : (Xm�1; �
m�1;R
1�0

)! (X1
m; �

m;R
0�0

) (6)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
1�0! Xm�1

1 # # 0
X1
m

�
m;R
0�0! X0

m

By de�nition 2.2 and eq.(3), eq.(5) and eq.(6) can be rewritten as

� : A(m� 1) ,! A(m) (7)

 : C(m� 1) ,! A(m) (8)

since X0
m and X1

m are subsets of Xm.

Theorem 15.1 For rule 3, A(m) is partitioned by (A(m� 1); �) and (C(m� 1);  ). We denote it as

A(m) = � �A(m� 1) +  � C(m� 1) for convenience.
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Proof 15.1 By eq.(5) and eq.(6), dynamical systems (A(m�1); �) and (C(m�1);  ) are the same as
and (X0

m; �
m;R
0�0

) and (X1
m; �

m;R
0�0

), respectively. By de�nition 2.2, A(m) is equal to (Xm; �
m;R
0�0

). Thus

theorem 15.1 means that (Xm; �
m;R
0�0

) is partitioned by (X0
m; �

m;R
0�0

) and (X1
m; �

m;R
0�0

). By eq.(3), since

Xm = X0
m [X1

m and X0
m \X1

m = ;, our theorem is trivial.

Now let us consider � and  as

� : (Xm�1; �
m�1;R
0�1

)! (X0
m; �

m;R
0�1

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
0�1! Xm�1

0 # # 1
X0
m

�
m;R
0�1! X1

m

and

 : (Xm�1; �
m�1;R
1�1

)! (X1
m; �

m;R
0�1

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
1�1! Xm�1

1 # # 0
X1
m

�
m;R
0�1! X0

m

Then these lead to theorem 15.2 by the similar way shown in theorem 15.1.

Theorem 15.2 For rule 3, B(m) is partitioned by (B(m � 1); �) and (D(m � 1);  ). We denote it

as B(m) = � �B(m� 1) +  �D(m� 1).

Again let us consider � and  as

� : (Xm�1; �
m�1;R
0�0

)! (X0
m; �

m;R
1�0

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
0�0! Xm�1

0 # # 0
X0
m

�
m;R
1�0! X0

m

and

 : (Xm�1; �
m�1;R
1�0

)! (X1
m; �

m;R
1�0

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
1�0! Xm�1

1 # # 0
X1
m

�
m;R
1�0! X0

m

Then these lead to theorem 15.3 by the similar way shown in theorem 15.1.
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Theorem 15.3 For rule 3, C(m) is partitioned by (A(m� 1); �) and (C(m� 1);  ). We denote it as

C(m) = � �A(m� 1) +  � C(m� 1).

Let us consider � and  as

� : (Xm�1; �
m�1;R
0�1

)! (X0
m; �

m;R
1�1

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
0�1! Xm�1

0 # # 0
X0
m

�
m;R
1�1! X0

m

and

 : (Xm�1; �
m�1;R
1�1

)! (X1
m; �

m;R
1�1

)

which satis�es the commutative diagram:

Xm�1

�
m�1;R
1�1! Xm�1

1 # # 0
X1
m

�
m;R
1�1! X0

m

Then these lead to theorem 15.4 by the similar way shown in theorem 15.1.

Theorem 15.4 For rule 3, D(m) is partitioned by (B(m � 1); �) and (D(m � 1);  ). We denote it

as D(m) = � �B(m� 1) +  �D(m� 1) .

The proofs of theorem 15.2, 15.3 and 15.4 are word for word the same as the proof of theorem 15.1,

so are not reproduced.

Theorem 15.1, 15.2, 15.3 and 15.4 now yield:

Corollary 15.1 The state transition graphs of A(m), B(m), C(m) and D(m) for rule 3 can be self-

reproduced by the interconnection of the four recursive formulae as following:

1. A(m) = � � A(m� 1) +  � C(m� 1)

2. B(m) = � � B(m� 1) +  �D(m� 1)

3. C(m) = � � A(m� 1) +  � C(m� 1)

4. D(m) = � � B(m� 1) +  �D(m� 1)

It is noted that these recursive formulae of cellular automata are irreversible. Thus cellular au-

tomata can be applied to cryptology with this property.

For example, let us consider the self-reproduction of the state transition graphs of A(2) for rule 3.

A(2) is partitioned by the subgraphs (A(1); �) and (C(1);  ) by theorem 15.1. In other word, (A(1); �)

is derived by transmitting the strings obtained by pre�xing 0 to each string in A(1) such as 00 and 01

to the strings obtained by pre�xing 1 to �
1;3
0�0

(0) = 1 and �
1;3
0�0

(1) = 0 such as 11 and 10 respectively.

(C(1);  ) is also constructed by transmitting the strings obtained by pre�xing 1 to each string in C(1)

such as 10 and 11 to the strings obtained by pre�xing 0 to �
1;3
1�0

(0) = 0 and �
1;3
1�0

(1) = 0 such as 00.

These are shown in Figure 2. A(2) in Figure 3 is composed of the subgraphs (A(1), �) and (C(1),  )
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1100 0110 11

10

A(1)

00 10

0 1

C(1)

Figure 2: The evolution process by the morphisms � and  .

0100 1011

Figure 3: The state transition diagram of A(2).

in Figure 2. These explain Theorem 4.1.

The state transition graphs of A(m) and B(m) for arbitrary cell size m can be reproduced by

repeating this process. Similarly, B(m) and D(m) for rule 3 can be self-reproduced. As the same as

the rule 3, the recursive formulae of all four cellular automata A(m), B(m), C(m) and D(m) for rules

0, 12, 15, 48, 51, 60, 192, 195, 204 ,207, 240, 243, 252 and 255 were found in this research. These are

shown in Appendix.

5 The Classi�cation of Cellular Automata According to the

Recursive Formulae

The recursive formulae for the state transition graphs of cellular automata A(m), B(m), C(m) and

D(m) for each of 256 rules have investigated in this paper. 103 rules of 256 rules have at least more

than two recursive formulae among four types of cellular automata A(m), B(m), C(m) and D(m).

These rules can be classi�ed into the following three groups according to the patterns of the

recursive formulae found as shown in table 1:

Group 1. The rules that the recursive formulae of A(m) and B(m) only were found

Group 2. The rules that the recursive formulae of C(m) and D(m) only were found

Group 3. The rules that the recursive formulae of A(m), B(m), C(m) and D(m) all were found

The reason for the classi�cation into the three groups is to show that the rules which have the

recursive formulae belong to each of the three groups. In other words, there are no rules that the

recursive formulae of A(m) and C(m) only or A(m) and D(m) only or B(m) and C(m) only or B(m)

and D(m) only were found.

It is noted that even the rules such as rule 124, 147 and 195, which are included in the Wolfram's

class 3 (namely have chaotic behaviors), have the recursive formulae.

Again the recursive formulae for A(m) which are generated by A(m�1) and C(m�1) are classi�ed
into the following four types:
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Group 1 Group 2 Group 3

19, 28, 31, 32, 35, 44, 64, 67,

76, 79, 80, 83, 92, 95, 96, 99,

108, 111, 112, 115, 124, 128,

131, 140, 144, 147, 156, 159,

160, 163, 175, 179, 188, 191,

208, 211, 220, 223, 188, 191,

208, 211, 220, 223, 224, 227,

236, 239

1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 13,

14, 50, 52, 53, 55, 56, 57, 58,

59, 61, 62, 63, 194, 196, 197,

198, 199, 200, 201, 202, 203,

205, 206, 241, 242, 244, 245,

246, 247, 248, 249, 250, 251,

253, 254

0, 3, 12, 15, 48, 51, 60, 192,

195, 204, 207, 240, 243, 252,

255,

Table 1: The classi�cation of the pattern of the recursive formulae found

Type 1 Type 2 Type 3 Type 4

19, 35, 67, 83, 99, 115,

131, 163, 179, 195,

211, 227, 243

28, 44, 12, 60, 76,

92, 108, 124, 140, 156,

188, 220, 236, 252

32, 48, 64, 80, 96, 112,

128, 144, 160, 192,

208, 224, 240

15, 31, 79, 95, 111,

147, 159, 175, 191,

207, 223, 239

Table 2: The classi�cation of A(m) and B(m)

Type 1 :A(m) = � �A(m� 1) +  � C(m� 1)

Type 2 :A(m) = � � A(m� 1) + � � C(m� 1)

Type 3 :A(m) = � � A(m� 1) +  � C(m� 1)

Type 4 :A(m) = � �A(m� 1) + � � C(m� 1)

The types of the recursive formulae for B(m) are the same as those for A(m), replacing A(m� 1)

by B(m � 1) and C(m � 1) by D(m � 1). The rules which are included to each of these types are

shown in table 2.

Similarly, C(m) has the following four types of recursive formulae:

Type 1 :C(m) = � � A(m� 1) +  � C(m� 1)

Type 2 :C(m) = � �A(m� 1) +  � C(m� 1)

Type 3 :C(m) = � � A(m� 1) + � � C(m� 1)

Type 4 :C(m) = � �A(m� 1) + � � C(m� 1)

D(m) has the same types as C(m), replacing A(m� 1) to B(m� 1) and C(m � 1) to D(m� 1).

The rules which are included to each of these types are shown in table 3.

Cellular automata can also be classi�ed into the following three classes according to the relations

among A(m), B(m), C(m) and D(m) as shown in table 4:

Class 1. The rules satis�ed with A(m) = B(m) and C(m) = D(m)

Class 2. The rules satis�ed with A(m) = B(m) = C(m) = D(m)

Class 3. The rules satis�ed with A(m) = C(m) and B(m) = D(m)

Type 1 Type 2 Type 3 Type 4

1, 2, 3, 4, 5, 6, 7, 8, 9,

10, 11, 12, 13, 14, 15

48, 50, 52, 53, 55, 56,

57, 58, 59, 60, 61, 63

192, 194, 195, 196,

197, 198, 199, 200,

201, 202, 203, 205,

206, 207

240, 241, 242, 243,

244, 245, 246, 247,

248, 249, 250, 251,

252, 253, 254

Table 3: The classi�cation of C(m) and D(m)
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Class 1 Class 2 Class 3

3, 12, 15, 48, 60, 192, 195, 0, 51, 204, 255, 17, 34, 68, 85, 102, 136, 153,

207, 240, 243, 252, 170, 187, 221,

Table 4: The classi�cation of the relations among A(m), B(m), C(m) and D(m)

The 15 rules included in the class 1 and the class 2 are included in the group 3 of table 1. Moreover,

in the class 1, A(m) can be generated by the interconnection with C(m) and B(m) can be produced

by the interconnection with D(m) vice versa (namely C(m) by A(m), D(m) by B(m)). However,

each of A(m), B(m),C(m) and D(m) for the rules included in the class 2 has self-recursive formulae

of itself (see Appendix).

6 Conclusion

In this paper, it has been tried to �nd the recursive formulae for the whole 256 rules of one-dimensional

cellular automata. As a result, the recursive formulae of 103 rules among 256 rules were found. With

these found recursive formulae, the self-evolution system of �nite cellular automata can be made

by a simple programming when the cell size increases. This system is also useful to identify the

dynamical behavior of one-dimensional cellular automata. The morphisms �;  � and � considered

the transition of only the �rst digit of state string on automaton con�guration in this paper. The

study on the transition of more than �rst digit remains as further work.

References

[1] J. Von Neumann, Theory of Self-Reproducing Automata , A.W.Burks,ed, 1967

[2] Yasuo Kawahara and Hyen Yeal Lee, \Period Lengths of Cellular Automata CAM-90 with

Memory", Journal of Mathematical Physics, Vol.38, No.1, pp. 255-266 1997

[3] Hyen Yeal Lee and Yasuo Kawahara, \On Dynamical Behaviors of Cellular Automata CA-60",

Bulletin of Informatics and Cybernetics, Vol.25, No. 1-2, 1992

[4] Hyen Yeal Lee, \Studies on Dynamical Behaviors of Finite Cellular Automata", Kyushu Univ.

Ph.D Thesis, 1995

[5] Hyen Yeal Lee and Yasuo Kawahara, \Transition Diagrams of Finite Cellular Automata", Bul-

letin of Informatics and Cybernetics, Vol.28, No. 1, pp. 47-69 1996

[6] Heather, M. A. et. al. \Category theory:mathematics for the humanities?", University of New-

castle upon Tyne: Computing Science. Technical Report Series 476 1994

[7] M. A. Arbib et.al.,Arrows, Structures, and Functors, Academic Press 1975

[8] H. Herrlich et.al. Category theory, Herdermann Verlag Berlin 1979

A Appendix

For rule 0, the following recursive relations hold:

1. A(m) = B(m) = C(m) = D(m)

2. A(m) = � � A(m� 1) +  � A(m� 1)
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3. B(m) = � � B(m� 1) +  � B(m� 1)

4. C(m) = � � C(m� 1) +  � C(m� 1)

5. D(m) = � �D(m� 1) +  �D(m� 1)

For rule 12, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) + � � C(m� 1)

3. B(m) = � � B(m� 1) + � �D(m� 1)

4. C(m) = � � A(m� 1) +  � C(m� 1)

5. D(m) = � � B(m� 1) +  �D(m� 1)

For rule 15, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) + � � C(m� 1)

3. B(m) = � � B(m� 1) + � �D(m� 1)

4. C(m) = � � A(m� 1) +  � C(m� 1)

5. D(m) = � � B(m� 1) +  �D(m� 1)

For rule 48, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) +  � C(m� 1)

3. B(m) = � � B(m� 1) +  �D(m� 1)

4. C(m) = � � A(m� 1) +  � C(m� 1)

5. D(m) = � � B(m� 1) +  �D(m� 1)

For rule 51, the following recursive relations hold:

1. A(m) = B(m) = C(m) = D(m)

2. A(m) = � � A(m� 1) +  �A(m� 1)

3. B(m) = � � B(m� 1) +  � B(m� 1)

4. C(m) = � � C(m� 1) +  � C(m� 1)

5. D(m) = � �D(m� 1) +  �D(m� 1)

For rule 60, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) + � � C(m� 1)

3. B(m) = � � B(m� 1) + � �D(m� 1)

4. C(m) = � � A(m� 1) +  � C(m� 1)
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5. D(m) = � � B(m� 1) +  �D(m� 1)

For rule 192, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) +  � C(m� 1)

3. B(m) = � �B(m� 1) +  �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � �B(m� 1) + � �D(m� 1)

For rule 195, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) +  � C(m� 1)

3. B(m) = � � B(m� 1) +  �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � �B(m� 1) + � �D(m� 1)

For rule 204, the following recursive relations hold:

1. A(m) = B(m) = C(m) = D(m)

2. A(m) = � � A(m� 1) + � � A(m� 1)

3. B(m) = � �B(m� 1) + � �B(m� 1)

4. C(m) = � � C(m� 1) + � � C(m� 1)

5. D(m) = � �D(m� 1) + � �D(m� 1)

For rule 207, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) + � � C(m� 1)

3. B(m) = � � B(m� 1) + � �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � �B(m� 1) + � �D(m� 1)

For rule 240, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) +  � C(m� 1)

3. B(m) = � �B(m� 1) +  �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � � B(m� 1) + � �D(m� 1)

For rule 243, the following recursive relations hold:
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1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) +  � C(m� 1)

3. B(m) = � � B(m� 1) +  �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � � B(m� 1) + � �D(m� 1)

For rule 252, the following recursive relations hold:

1. A(m) = B(m); C(m) = D(m)

2. A(m) = � � A(m� 1) + � � C(m� 1)

3. B(m) = � � B(m� 1) + � �D(m� 1)

4. C(m) = � � A(m� 1) + � � C(m� 1)

5. D(m) = � � B(m� 1) + � �D(m� 1)

For rule 255, the following recursive relations hold:

1. A(m) = B(m) = C(m) = D(m)

2. A(m) = � � A(m� 1) + � �A(m� 1)

3. B(m) = � � B(m� 1) + � � B(m� 1)

4. C(m) = � � C(m� 1) + � � C(m� 1)

5. D(m) = � �D(m� 1) + � �D(m� 1)
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Abstract

The problem of adaptive stabilization of the Lorenz system with unknown parameters is solved
in this paper. The invariant manifolds theory is used in the development of the adaptive control

strategy. Our control strategy is di�erent from the conventional control strategies in the sense
that it can deal with the case where the equilibrium of the system is not known. Conditions for
stabilization of the Lorenz chaos are given and simulations presented.

1 Introduction

Controlling chaos has received more and more attention in the physics, mathematics and engineering

communities. Various linear and nonlinear control techniques have been developed for chaotic systems,

see, e.g., [1]{[5] and references therein. All the existing chaos control methods assume that the system

parameters are known precisely. Although chaotic systems are deterministic dynamical systems, in

practice, the constant system parameters may not be known either exactly or at all, making application

of the existing control strategies problematic. In this paper, we propose an adaptive control strategy

using the invariant manifold theory that is able to deal with the situation.

Adaptive control has been studied extensively and proved to be one of the e�ective design methods

for linear and nonlinear systems with unknown parameters[6, 7, 8]. A basic assumption of these control

strategies is the system equilibrium is �xed and known. The equilibrium of chaotic systems is usually

a function of the system parameters. When these parameters are unknown, direct application of

existing adaptive control strategies is not possible.

In this paper we investigate the adaptive chaos control issue by studying the adaptive control of the

Lorenz chaos whose parameters are assumed to be unknown. We propose to use some stable manifolds

(which will be adaptively adjusted) that exhibit a desired dynamical performance, and then design an

adaptive control such that the manifolds are reached. An update law for parameter estimates is also

proposed that is able to give exact estimation of the unknown parameters. A simulation is presented

to show the e�ectiveness of the approach.

2 Adaptive Stabilization via Invariant Manifolds

The Lorenz system basically models the convection process in our atmosphere or the process such as

heating a plot of water. The convection process was formally modeled and studied by Lorenz [10] as

follows:

_x1 = �(x2 � x1); (1)

_x2 = �x1 � x1x3 � x2; (2)

_x3 = ��x3 + x1x2: (3)
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The constant � is called the Prandtl number and it is assumed that � > 1. The constant � depends

on the temperature di�erence and is assumed to be � > 1, meaning that the bottom of the region

heated is always warmer than the top, and convection occurs. The constant � is related to the given

space.

It is evident that the system has three equilibria:

a = (a1; a2; a3)
T =

24 (�(�� 1))1=2

(�(�� 1))1=2

�� 1

35 ; (4)

b = (b1; b2; b3)
T =

24 �(�(�� 1))1=2

�(�(�� 1))1=2

�� 1

35 ; (5)

c = (c1; c2; c3)
T = (0; 0; 0)T: (6)

In this paper we assume that the constants �, � and � are unknown. In this case the equilibrium a

and b are also unknown. We only consider the problem of stabilization at the unknown equilibrium a.

Stabilization at b is similar since the Lorenz system is symmetric with respect to the x3 axis. Since the

parameter � does not inuence the equilibrium, in the following we omit its estimation for e�ciency

sake.

To stabilize the Lorenz chaos we introduce two control inputs in the system as follows:

_x1 = �(x2 � x1); (7)

_x2 = �x1 � x2 � x1x3 + u1; (8)

_x3 = ��x3 + x1x2 + u2: (9)

The following two manifolds as invariant manifolds are selected:

M1 = fx 2 R3 : x2 � a2 = 0g; (10)

M2 = fx 2 R3 : x3 � a3 = 0g: (11)

It can be easily seen that M1 is a stable manifold of the Lorenz system. Indeed, when x2 � a2 = 0,

since � > 0 and � > 0, from (7) and (9) it can be derived that x1 ! a1, x3 ! a3. Therefore the

system is also stable on the intersection of the two manifolds:

Mc =M1 \M2 = fx 2 R3 : x2 � a2 = 0; x3 � a3 = 0g: (12)

Our goal is to design a control which drives the system trajectory along the two manifolds to the

set Mc. Then, by the Lasalle's Invariant Set Principle [9] we can conclude that x will converge to the

equilibrium a asymptotically where a is the only stable equilibrium of the set Mc.

To design such a stabilizing controller we construct a Lyapunov function as follows:

V (x) =
1

2
 T (x)T (x) (13)

where  T (x) = [  1(x)  2(x) ] = [ x2 � a2 x3 � a3 ], T 2 R2�2 is a positively de�nite matrix.

Now we want the following di�erential equations hold so that the controller can be designed:

T _ (x) +  (x) = 0: (14)

Therefore the time derivative of V (x) becomes

_V (x) = � T (x) (x):
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This implies that _V (x) < 0 for all x 62 Mc, meaning the system trajectory can be driven to Mc

asymptotically. To �nd such a controller, substituting the system equations (7){(9) into Eq.(14) gives

u =

�
u1
u2

�
= �

�
�x1 � x1x3 � x2
��x3 + x1x2

�
� T�1

�
x2 � a2
x3 � a3

�
: (15)

If the parameters �; �; � are known a priori, the controller (15) should be able to realise the

stabilization. However, the controller (15) is not implementable because parameters �, � and � are

assumed to be unknown. This problem cannot be directly solved via the conventional adaptive control

theory [7] because the basic assumption of the adaptive control is that the equilibrium is �xed and

known. It is not the case in our situation. We shall develop a tailored adaptive control for the

Lorenz chaos in the following. Because the parameters � and � are unknown, we use the modi�ed two

invariant manifolds M1 and M2 which are de�ned, respectively, as

 ̂1(x) = x2 � â2 and  ̂2(x) = x3 � â3

where â2 =

q
�̂(�̂� 1) and â3 = �̂ � 1. For the adaptive control design, we construct the following

parameter-estimate-dependent Lyapunov function:

V (x; �̂; �̂) =
1

2
 ̂T (x)T  ̂(x) + eT��1e: (16)

where e = � � �̂ with � = [ � � ]T and �̂ = [ �̂ �̂ ]T , and  ̂T (x) = [  ̂1  ̂2 ] and � 2 R2�2 is a

positive de�nite matrix. Denote

f(x) =

24 �(x2 � x1)
�x2 � x1x2

x1x2

35 ; F (x) =

24 0 0

x1 0

0 �x3

35 ; g(x) =

24 0 0

1 0

0 1

35 :
Then the time derivative of the Lyapunov function along the Lorenz dynamics is

_V (x; �̂; �̂) =  ̂TT
@ ̂

@x
(f(x) + F (x)� + g(x)u) +  ̂TT

@ ̂

@�̂

_̂
� � eT��1 _̂�

=  ̂TT
@ ̂

@x
(f(x) + F (x)�̂ + g(x)u) +  ̂TT

@ ̂

@x
F (x)e+  ̂TT

@ ̂

@�̂

_̂
� � eT��1 _̂�:

Let u consists of two component, i.e.

u = ue + uc:

Also let

@ ̂

@x
(f(x) + F (x)�̂ + g(x)ue) = �T�1 ̂; (17)

 ̂TT
@ ̂

@x
g(x)uc = � ̂TT @ ̂

@�̂

_̂
�; (18)

 ̂TT
@ ̂

@x
F (x)e = eT��1 _̂�: (19)

Then
_V = � ̂T  ̂ < 0

for all x such that  6= 0. So the stability of the system state with respect to the invariant manifolds

 ̂1 = 0 and  ̂2 = 0 is realized. From (17){(19) we obtain

ue =

�
ue1
ue2

�
= �

�
�̂x1 � x1x3 � x2
��̂x3 + x1x2

�
� T�1

�
x2 � â2
x3 � â3

�
; (20)
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Figure 1: 3D image of Controlled Lorenz Chaos

uc =

�
uc1
uc2

�
= �

"
� �̂

2
p
�̂(�̂�1)

� (�̂�1)

2
p
�̂(�̂�1)

�1 0

#
�

�
x1 0

0 �x3

�
T

�
x2 � â2
x3 � â3

�
; (21)

and the update law for parameter estimation:

_̂
� =

"
_̂�
_̂
�

#
= �

"
@ ̂

@x
F (x)

#T
T  ̂ = �

�
x1 0

0 �x3

�
T

�
x2 � â2
x3 � â3

�
: (22)

Simulations were done to demonstrate the e�ectiveness of the proposed adaptive control strategy.

The parameters for the Lorenz system were set to be are � = 10, � = 28 and � = 8=3. Also constant

matrices were set to be

T =

�
1:43 0

0 0:50

�
; � =

�
1:05 0

0 0:25

�
;

and the initial condition was x(0) = ( �2:0 �1:0 30:0 )T , ( �̂0 �̂0 ) = ( 33:0 4:0 ). Simulation

results were shown in Fig.1 | Fig.3. Fig.1 presents the trajectory of the controlled Lorenz system. We

can see that during the adaptation process of parameters, the trajectory spirals around and eventually

converges to the desired equilibrium. Fig.2 shows the system state responses, and Fig.3 illustrates the

convergence of the system parameter estimates. Apparently the parameter estimates converge to the

true values of the Lorenz system.

3 Discussion and Conclusion

In this paper we have developed an adaptive control strategy for controlling Lorenz chaos. Our strategy

is able to deal with the case where the equilibrium is unknown due to unknown system parameters

which cannot be solved by the conventional adaptive control theory. The e�ectiveness of the approach

has been demonstrated via computer simulations. A few remarks are o�ered here.
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Fig. 2: System responses.

Note that the second manifoldM2 used in the proposed method is unstable. In fact, when x3�a3 =
0, the dynamics of the Lorenz system is reduced to

_x1 = �(x2 � x1); (23)

_x2 = �x2 + x1; (24)

_x3 = x1x2 � �(�� 1): (25)

Di�erentiating (26) and (27) yields

(x1 � x2)0 = �(� + 1)(x1 � x2)

which means x1 ! x2. When x1 and x2 converge to a value such that x1x2 > �(�� 1), x3 will blow

up. The question is why do we need an unstable manifold for stabilization problem? To address this

problem, let us consider the case when the system is controlled to the stable invariant manifold M1.

In this case we can use a single control input as follows:

_x1 = �(x2 � x1); (26)

_x2 = �x1 � x2 � x1x3 + u; (27)

_x3 = ��x3 + x1x2: (28)

To make the manifold M1 invariant, we can take a Lyapunov function as

V =
1

2
(x2 � â2)2 + 1

2
(�� �̂)2 + 1

2
(� � �̂)2: (29)

Then, by using the design procedure presented in Section 2, we obtain the controller as

ue = �(�̂x1 � x1x3 � â2); (30)

uc =
x1�̂(x2 � â2)
2

q
�̂(�̂� 1)

; (31)
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Fig. 3: Parameter estimation.

and the update law for parameter estimation:"
_̂�
_̂
�

#
=

�
(x2 � â2)x1

0

�
: (32)

We can see that �̂ will not change. So when t!1 the system state will converge to

x0e =

26664
q
�̂(�� 1)q
�̂(�� 1)
�̂(��1)

�

37775 :
Note that x0e is neither the equilibrium of the actual Lorenz system nor the equilibrium of the Lorenz

system under M1.

From the above discussion we can draw the following conclusions:

� When the equilibrium to be stabilized is a function of unknown parameters, the system stability

is dependent on the convergence of parameter estimation;

� To ensure the convergence of parameter estimation we must introduce enough invariant manifolds

to excite the system dynamics.
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Abstract

Previous work de�ned a simple arti�cial world and evolved agents that utilized several e�ective
communication schemes that aided the agents with a foraging task and predator avoidance. The
agents were able to extend their average life span by coordinating their actions via undirected

communication. The model did not force the agents to communicate | instead the model was
designed to explore the types of communication schemes that could evolve and the situations
that facilitated the evolution of communication. This work examines some of the assumptions

within the previous work. Speci�cally, population size is altered to study the e�ectiveness of
the communication scheme over varying conditions. This work shows that the population size
can e�ect the group behavior and introduces a method for quantifying the emergent e�ects of

individuals upon group behavior. The results show that the coordination techniques developed in
the previous work are not always bene�cial and that this cooperative model displays diminishing
returns.

1 Introduction

Multi-agent systems o�er many advantages over their single agent counterparts. The parallel nature

of multi-agent systems facilitates scaling to handle larger, more diverse problems. The redundant

property of multi-agent systems provides robustness with graceful degradation in the event of individ-

ual failures. Simple control architectures are often su�cient for the agents since multi-agent systems

take advantage of emergent behaviors that arise from inter-agent actions and the interaction between

the agents and their environment.

However, these advantages do not come for free. Coordinating the actions of the agents is not a

trivial problem. Predicting and controlling group behavior is not a straightforward task because the

relations between the system parameters and the group behavior are often complex. This research

is focused on studying the parameters that e�ect coordination within multi-agent systems. Part of

this process involves creating a method through which one can measure the e�ectiveness of a group's

coordination. This paper describes one such method as it examines the relationship between group

size and the group's performance.

2 Related Work

Distributed arti�cial intelligence has worked extensively on the problem of coordination ([1], [12]).

However, the majority of the work in the �eld uses sophisticated individual agents, with belief systems

and mechanisms that allow them to estimate the state of other agents and how to react to the

information gathered. These agents are relatively complex and the behavior generated as they interact

with each other is even more complicated. Design issues in these systems have remained hot research

topics. Instead of adding to the complexity, Ferber [6] has worked with reactive agents. Reactive

agents are stimulus-response machines, without any state or planning capabilities. Yet, in the work

described by Ferber, the agents could only communicate by altering objects in the world. There were

no facilities analogous to the auditory system. Mataric's [9] work on coordinating simplistic agents,
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the agents are given a variety of primitive actions, but none of the actions involve communication.

Coordination in these models is based solely upon visual input. Looking at animal societies, one

notices that auditory communication can coordinate activity (elephants [13], vervet monkeys [15], and

Belding's ground squirrels [16] are all examples of auditory animal communication systems). These

societies can be used as inspiration for using undirected communication schemes to coordinate reactive

agents.

Indeed, there has been work done on evolving communication systems with simplistic agents.

MacLennan and Burghardt [7] describe their model within which they evolved a communication

system. In their experiments one agent was in a position to receive environmental cues. This agent

was then given the opportunity to communicate with other agents to inform them of the current state of

the world. The others are rewarded for performing the proper action in response to the environmental

cue provided to the single agent. With the aid of a genetic algorithm, agents evolved that were able

to reliably respond appropriately to the environmental cue. Noble and Cli� [11] have reproduced and

critiqued MacLennan and Burghardt's work. Their work can serve as a reminder that even in the

simplest systems, small assumptions in design can have substantial side-e�ects in performance. Yanco

and Stein [19] used two robots in a model similar to MacLennan and Burghardt's. The \leader"

robot would receive an environmental cue then transmit a signal to the \follower". Their robots

converged upon a communication scheme via reinforcement learning (the learning signal was supplied

by humans observing the robots). Saunders and Pollack [14] describe a model that utilizes continuous

channels of communication instead of discrete symbols. Their work evolved agents that would use one

communication channel for recruitment in a search task. These systems all share the characteristic

that communication occurs between only two agents, which could eliminate some of the advantages

that communication systems have to o�er.

Werner and Dyer [17] presented a model of a communication system evolved within a system of

many agents interacting in a two dimensional environment. The females in their model were unable

to move but were able to see and speak. The males in the model were able to move and hear but

were blind and mute. After many generations of a genetic algorithm, the population of males and

females converged upon representations that allowed them to e�ciently �nd each other via the female's

instructional signals. This model, along with some of the models mentioned earlier make distinctions

between the sender and the receiver in the system. If an agent is designated as a sender, and others

are made to receive the messages, then communication has to occur. In a sense, there is no other

solution to the problems at hand besides communication.

Werner and Dyer [18] introduced a new model without these distinctions. They created `BioLand'

where the agents were modeled after Braitenburg's vehicles [4]. The model developed agents which

displayed predator/prey dynamics. Though the agents were capable of communicating, the agents

did not utilize a communication system. The lack of communication was attributed to the success of

the agents' visual system. The agents were capable of visually sensing enough information for their

survival and there was no need to communicate.

3 A New Model

Drawing from the previous simulations, as well as from animal societies, I designed a new arti�cial

world to study undirected communication schemes and their potential coordination bene�ts. The

world is updated in an asynchronous manner. An object is picked at random and then is activated.

When the object is done performing its actions, another object is picked. Agents are allowed to roam

freely about the world and since it is toroidal, they cannot fall o� the edges. There is a coordinate

system on the world, with each object only one spatial unit in size. Any number of objects can be at

any spot in the world.

The agents have initial health values, which are reduced each time they are activated. When the

agent's health value reaches 0 it is considered dead and removed from the world. Currently, only

homogeneous populations of agents are introduced into the world. By creating a population of agents
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from a single genetic representation, the agents can take advantage of the fact that they will only

encounter agents that are identical to themselves. A biological analogy would be the similar innate

behaviors found in a closely related group of animals.

In addition to the agents, the world contains areas spanning many spaces that either increase

or decrease an agent's health. These areas are meant to be abstractions of food and danger. In a

real world search task, these areas could represent various goal objects and novel obstacles. The areas

appear periodically in random locations and would remain for varying durations. The areas are biased

towards the dangerous type to create a less agent-friendly environment. Mobile predators are also

part of this world and their sole purpose is to decrement the agent's health.

3.1 The Agent

The agents have 6 input channels. A single tactile channel responds to objects in contact with the

agent. They have one visual channel, of a very limited range, that can sense immediately ahead, with

a 40 degree �eld of view. They have four auditory channels, one for each direction. All the types of

objects in the world have a di�erent identi�er, detectable on the visual and tactile channels. There

are three distinct auditory signals recognized. The signals are discrete, in that they are heard or not

heard. The clarity or strength of the signal does not degrade within an agent's sensory range.

The range for vision is �ve spatial units while the auditory system has a range of �fteen units.

The values for the vision and auditory ranges attempt to model an agent with poor vision and decent

hearing. Tall grass can limit visibility for smaller animals but their hearing is mostly una�ected and

elephants use low frequency signals in order to communicate distances much further than they can

see. There is no facility that the agents can use to maintain an internal sense of state. Severely

limiting the abilities of the agents is an attempt to insure that the behaviors are emergent rather than

an inherent ability. This work's long term goal is to study the development of intelligent systems,

without necessarily developing intelligent agents.

The behavior of an agent is controlled by a simple production system. Each agent can have up to

ten rules. The conditions of the production rules are combinations of possible input values logically

OR'ed together. A logical NOT e�ecting the entire set of conditions is optional. If a production

rule's condition is matched by environmental cues received by the agent, then one of seven actions is

performed:

� Start moving forward (until the stop action is performed).

� Stop moving

� Orient away from stimulus (negative taxis)

� Orient towards stimulus (positive taxis)

� Emit signal 1, 2, or 3 (for one activation)

Putting it all together creates rules like these:

� if (see negative area) then start moving.

� if not (hear signal 1 behind OR see agent) then orient towards stimulus.

� if (hear signal 2 left OR hear signal 2 right) then stop moving.

If a rule's action is to orient towards or away from a stimulus, yet there is no stimulus in the condition

(for instance, if not(see agent) then orient towards) then the agent will have a 10% chance of turning

left or right. This interpretation of the action allows for the agents to perform a random walk.

Each time an agent is activated its health value is checked. If it is zero or less the agent is removed

from the world. Otherwise, information is gathered from the local environment according to the limits

of the agent's sensory system. This creates a list of inputs to use within the production system. The
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inputs are stored in a limited sized bu�er to simulate a �nite mental capacity and an imperfect sensory

system. Thus, there is no guarantee that all the inputs (or any speci�c input) from the environment

would be available to the agent. The rule set then uses the inputs to trigger actions, with the actions

taking e�ect immediately. Finally, the agent's health value is adjusted. One health unit is subtracted

for the activation, and whenever an agent contacts a bene�cial or dangerous area its health is also

appropriately adjusted.

3.2 The Predator

The predators in the world are similar to the agents with only a few di�erences. Their sensory system

has 3 visual channels (forward, left and right) with a greater range (15 units) and no auditory channels.

They do not have the ability to emit sounds. If a predator is in contact with an agent, it will subtract

a certain amount of health from the agent and add it to its own health. In order to make the predators

a real threat, the predators' activation routine will loop probabilistically. This results in the predators

being able to move several spaces per activation, essentially making them `faster' than the agents.

Also, the production rules that control the predators do not evolve, they were designed by hand and

unchanged in order to remain a constant threat. Their rules instruct them to head towards any agent

they see. If a predator does not detect any agents, it will move forward, occasionally turning to the

left or right.

3.3 Previous Results

Early experiments [3] used a genetic algorithm to search through the space of rule sets to control

the agents. Eventually a cooperative foraging behavior was evolved using a population of 15 identical

agents. The foraging was accomplished by two rules | one that emitted a signal when food was found

and another that oriented towards the signal when heard. Although this behavior does not directly

help the sender, this communication does help extend the average life span of the group. The average

life span is used to calculate the �tness of the homogeneous group's control set. The genetic algorithm

then selects for these behaviors.

Later work [2] introduced the non-evolving mobile predators to the arti�cial world. Again, a genetic

algorithm was used to evolve the rule sets further. A derivation of the foraging communication scheme

was discovered. The general purpose recruitment scheme emits the attracting signal when food is found

as well as when a predator is found. This behavior sounds counter-intuitive at �rst, but does extend

the average life span of the agents more than the foraging call. This scheme takes advantage of the

simple architecture of the predators. When the agents crowd the predators, the predators are not able

to accurately track any particular agent. This distributes the damage done by the predator among all

the nearby agents, as well as sometimes even disorienting the predators enough that they lose contact

with the ock of agents entirely. Indeed, this phenomena is common in natural systems and is known

as the \confusion e�ect"[5].

Another communication scheme evolved that used two di�erent signals | one in response to food

and one in response to predators. The agents orient towards the signal emitted for food and away

from the signal generated for the predator. This scheme also had a successful derivation. Some rule

sets found by the genetic algorithm would propagate the alarm call. That is, when the predator call

was heard, not only would the agent orient away from the signal, but the agent would emit the alarm

signal as well. This extended the e�ective range of the alarm call, providing the information of a

threat to a wider audience.

4 Testing Performance over Population Sizes

The last two communication schemes mentioned above were examined in this work. They were chosen

because it was not clear if they would continue to produce bene�cial results as the number of the agents

increased. Since the model uses undirected communication, population density e�ects the number of
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recipients for each signalling. The more dense the population is, the more likely a larger number of

agents will receive the signal. This behavior can lead to a noisy environment, where the abundance

of signals becomes confusing and diminishes the value of the signals.

To test the e�ects of population size on group behavior, three agents were placed into the world

with �fteen predators. The average life spans of the agents in the populations were recorded. To

account for the variation in performance of the agents, this procedure was repeated nine more times

and the values (average life span) were averaged over the 10 samples. This methodology was then

applied with agent populations of size seven, ten, �fteen, twenty-two, thirty, forty-�ve, sixty, and

seventy-�ve. The predators were kept constant at �fteen in order to keep the environment as constant

as possible while the agent population size changed.

5 Results

The task of survival was chosen because it had the advantage that it can be accomplished as an

individual. Foraging is a task that can be performed as an individual or as a group via communication.

Allowing foraging to e�ect survival creates a relationship between cooperation and survival. The task

doesn't demand cooperation or coordination, but individual performance can bene�t from it, and it

is a measurable bene�t (increases in average life spans). When evaluating the performance of various

population sizes, a similar metric is needed. This work proposes dividing the average life span of the

group by the population size, creating the coordination advantage :

Coordination Advantage =
averageLifeSpan

populationSize

This value determines the cases where the agents are actually coordinating their actions enough

to bene�t the group's behavior. This quanti�es the e�ects of the emergent group phenomena as

a measure for each agent's average contribution to the group's overall �tness. Figure 1 shows the

Coordination Advantage values for the two models tested so far. The graph shows that the advantage

is lost as the population size grows, reaches a minima, then starts to climb back up. However, the

minima for the two schemes have di�erent values and occur at di�erent population sizes.

Population size plays an important role at the extremes of Figure 1. When the population is small,

the agents would have to die very quickly in order for them to have a small Coordination Advantage

(since the denominator is small). This is unlikely due to the imperfections of the predators | they

just aren't that e�cient. In smaller populations, the propagation of the alarm call proves to be a

better strategy, as the signal range of the individuals is extended via the propagation.

When the population is very large, the Coordination Advantage begins to increase. This can be

attributed to the confusion e�ect. The large number of agents makes it hard for the predators to

track any particular agent. While other communication schemes explicitly attracted other agents to

confuse the predators, the confusion e�ect can also be seen as a side e�ect of a large population of

agents. The random distribution and movements of the agents can be enough to keep the predators

from tracking any particular agent.

This leaves the propagation of the alarm call responsible for the di�erences in behavior for mod-

erately sized groups. By propagating the alarm call, the agents are able to coordinate their activity

better while the populations are in the low and middle ranges. In fact, all the population sizes of

twenty-two or smaller are more productive per agent when the alarm calls are propagated. As the

population size grows, less communication (no propagation of the call) is a more e�ective scheme.

Indeed, the extra communication in large populations that propagate calls degrades the perfor-

mance of the group as a whole. The agents are propagating the call to too many other agents as the

signal spreads too far. This creates a feedback e�ect, as the agents receive signals that were generated

in response to their own, or even worse | that have wrapped around the world. The signi�cance of

the signal becomes questionable as an individual cannot tell how immediate the threat is. In some

cases, the threat signal could drive the individual away from food sites, even when there is no nearby
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Figure 1: The coordination advantages for the agent populations that don't propagate the alarm

signal and that do propagate the alarm signal. The propagation of the signal is more e�cient with

smaller population sizes, but then loses its advantage as the population size grows.

threat. Therefore, propagating the alarm call isn't e�ective in large populations. But through the

confusion e�ect, the agents are able to increase their Coordination Advantage in large populations,

even though it is not explicit coordination.

In order to gain another measure of the e�ectiveness of the group, the amount of food foraged

by the group was measured. This data doesn't rely on the abilities of the predator, but only on the

ability of the agents to cooperate as a group. From one population size to the next, the amount of

food gathered increases (due to more agents) so the change in harvest amount is measured instead,

and that is averaged over a population size.

This data in Figure 2, shows that there are diminishing returns when it comes to foraging. The

larger groups are again able to collect more as a whole, but the performance does not steadily increase.

In this case there is not competition for the food, but instead, the agents are not communicating clearly.

The excess communication deteriorates a large group's e�ectiveness, through inaccurate warning sig-

nals. As more agents are added to the system, the individuals become increasingly less productive.

In smaller groups the propagating alarm call provides additional warning for the agents. This allows

the individuals to live longer and have more chances to harvest. These agents end up being more

productive individuals on average.

6 Discussion

The Coordination Advantage value proved useful in analyzing the di�erences between communication

schemes. By looking at the graphs of performance over the population size, one can infer that the

global trends (the U shaped curves) are due to environmental traits. The di�erences between the

trends, the local changes, then can be attributed to the behavior di�erences. Via the Coordination

Advantage metric this work has shown that there is an advantage to be gained at smaller population

sizes with the propagation of the alarm call. However, the e�ort of propagating the call is wasted as

the agent population increases.

Note that as each larger population dies o�, the population size will enter a smaller range where

communication does have bene�ts, which should increase their e�ectiveness. Yet it the end, some of
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Figure 2: The amount harvested per individual changes with the population density. For instance,

the average individual in the population of size 7 harvests more than the average individual in a

population of size 3. The amount harvested increased by 6.14 items in the non-propagating case and

13 in the propagating case. As the population size increases, productivity of the individuals obeys the

law of diminishing returns. The propagating model peaks earlier, showing that in small groups, the

agents are able to forage more as they have a better warning system. In large groups, there is excess

communication which degrades the signal propagating group's e�ectiveness.

the larger populations still have very bad Coordination Advantage values. This could be explained

by the agents leaving food sources when they hear alarm calls. If alarm calls are propagated over

relatively long distances, the agents would be leaving food sources for threats that are not nearby. This

prevents the agents from extending their life spans | which decreases their Coordination Advantage

value. The decrease in the amount of food foraged seems to support this hypothesis.

This model demonstrates that there are trade-o�s between explicit coordination and population

size. While the system harvests optimally at moderate population sizes, the average lifetime does

not reect that. This result reinforces the notion of coordination that arises as a side e�ect from the

interactions between the agents and their environment. The environment does not have an intrinsic

limit, creating the diminishing return. Instead the phenomena responsible for the diminishing returns

arises from the interaction of the agents with each other. Their success is not due to their coordination,

but instead the sheer number of agents in large populations is able to confuse the predators, making

the predators less e�ective. This type of coordination is hard to plan for and can even be di�cult to

identify, but that does not mean it will not play a role in group behavior.

It would be of interest to further investigate the communicating animal societies, like Belding's

ground squirrels and their alarm calls, to guide further research. In natural systems it isn't clear

whether population size was limited by the e�ectiveness of communication or whether population

size, limited by other forces, facilitates cooperative communication. This model provides a framework

within which one can study the interplay between group size, communication, and group behavior,

with the possibility of gaining insight into the behavior of natural systems. Regarding the design

of multi-agent systems, this work also exposes some of the limitations of the systems. The systems

cannot escape the law of diminishing returns, but we can study the agent-environment interactions to

better predict the e�ects of system parameters on �nal returns.
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Abstract

We introduce generous, even-matched, and greedy strategies as concepts for analyzing games.
A two person prisoner's dilemma game is described by the four outcomes (C,D), (C,C), (D,C),

and (D,D). In a generous strategy the proportion of (C,D) is larger than that of (D,C), i.e. the
probability of facing a defecting agent is larger than the probability of defecting. An even-matched
strategy has the (C,D) proportion approximately equal to that of (D,C). A greedy strategy is an

inverted generous strategy. The basis of the partition is that it is a zero-sum game given that the
sum of the proportions of strategies (C,D) must equal that of (D,C). In a population simulation,
we compare the prisoner's dilemma (PD) game with the chicken game (CG), given complete as

well as partial knowledge of the rules for moves in the other strategies. In a tra�c intersection
example, we expected a co-operating generous strategy to be successful when the cost for collision
was high in addition to the presence of uncertainty. The simulation indeed showed that a generous

strategy was successful in the CG part, in which agents faced uncertainty about the outcome. If
the resulting zero-sum game is changed from a PD game to a CG, or if the noise level is increased,
it will favor generous strategies rather than an even-matched or greedy strategies.

1 Background

In the area of multi-agent systems (MAS), game theory [16] has proven useful, particularly as a tool

for modeling the behavior of utility-based agents (see, e.g., [17]). In the quest for identifying and

eventually inducing rational behavior in arti�cial agents, game theory has also been adopted as a

normative theory for action. The main inspiration for this research has been the original axiomatic

formulations of utility theory, starting with [19]. The di�culties involved in choosing a particular such

axiomatisation as a blueprint for agent simulations led MAS researchers to simplify the assumptions

of game theory. Confusion about the usefulness in practice of game-theoretic approaches in some

MAS papers has led to criticism (cf. [15], [8], [11]). That said, simulation methods in MAS have been

successfully connected to utility theory and economics, and generally to reasoning under uncertainty,

and MAS simulation has matured into an important subtopic (see, e.g., [9]).

2 Methodology

In section 3, we introduce a generous-and-greedy model for strategies. There are at least four di�erent

questions that should be addressed when trying to implement this model:

1. Which kinds of strategies are involved?

2. Which kinds of games are played?
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Figure 1: A tra�c intersection situation.

3. What does a population of strategies look like?

4. What happens if the agents are uncertain about how to react against a strategy?

In sections 4-7 a tra�c intersection example is described and simulated using both a population

tournament and a noisy environment. We �rst look at questions 1 and 2, in section 5. Our main interest

is to discuss dynamics, not to �nd the optimal solution for a certain kind of problem. We will look

at 15 di�erent strategies within two prisoner's dilemma-like games: the Iterated Prisoner's Dilemma

(IPD) and the Iterated Chicken Game (ICG). In section 6, question 3 is treated as a population

tournament. We start with the same amount of agents for each strategy and let the di�erent agents

compete within a population tournament. Finally, in section 7, we look at question 4. Introducing

noise into the strategies simulates the \shaky hand principle". This means that the strategy changes

to the opposite strategy for a given percentage of moves. We conclude with a short section on the

implications of our results.

3 A Generous-and-Greedy Model for Strategies

The PD is a well-studied game, used in MAS [15] to create systems with a predicted cooperative

behavior. When Axelrod and Hamilton ([4], [3]) analyzed the IPD, they found that a co-operating

strategy, called Tit-for-Tat (TfT ), did very well against strategies with more defect. This strategy

has become an informal guiding principle for reciprocal altruism [18]. A TfT agent begins with

cooperation and then imitates its opponent, in a game of unknown length. Axelrod describes this as

being nice and forgiving against a defecting strategy that uses threats and punishments. Binmore [7]

(p194-203) presents a critical review of TfT, and of Axelrod's simulation. He concludes that TfT is

only one out of a very large number of equilibrium strategies and that it is not evolutionary stable. On

the other hand, evolutionary pressures select equilibria for IPD in which the agents eventually tend

to cooperate. Instead of highlighting niceness or some other similar property, we will analyze strategy

quality strictly through proportions of (C,C), (C,D), (D,C), and (D,D). The notation (C,D) means

that the �rst agent is playing cooperate against a second defecting agent, etc. We will next de�ne

informally a partition of the strategies, as an alternative to Axelrod's incomplete interpretation, in

terms of nice, resistant to provocation, and evil strategies.

A generous strategy cooperates more often than its opponents do when they meet. This means

that the proportion of (C,D) is larger than that of (D,C), i.e. the probability of facing a defecting

agent is larger than the probability of defecting.

An even-matched strategy has the (C,D) proportion approximately equal to that of (D,C).
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Cooperate (C2) Defect (D2)

Cooperate (C1) 1:5T , 1:5T 2T , T

Defect (D1) T , 2T 1:5T + qT , 1:5T + qT

Table 1: Resource allocation as a time delay problem.

A greedy strategy defects more often than its opponents do when they meet, making it an inverted

generous strategy.

The basis of the partition is that it is a zero-sum game on the meta-level in that the sum of proportions

of the strategies (C,D) must equal the sum of the strategies (D,C). In other words, if there is a

generous strategy, then there must also be a greedy strategy. The classi�cation of a strategy can

change depending on the surrounding strategies. Let us assume we have the following four strategies:

Always Cooperate (AllC ) has 100% cooperate ((C,C) + (C,D)) when meeting another strategy.

AllC will never act as a greedy strategy.

Always Defect (AllD) has 100% defect ((D,C) + (D,D)) when meeting another strategy. AllD will

never act as a generous strategy.

Tit-for-Tat (TfT ) always repeats the move of the other contestant, making it a repeating strategy.

TfT naturally entails that (C,D)�(D,C).
Random plays cooperate and defect approximately half of the time each. The proportions of (C,D)

and (D,C) will be determined by the surrounding strategies.

Random will be a greedy strategy in a surrounding of AllC and Random, and a generous strategy in

a surrounding of AllD and Random. Both TfT and Random will behave as an even-matched strategy

in the presence of only these two strategies as well as in a surrounding of all four strategies, with AllC

and AllD participating in the same proportions. All strategies are even-matched when there is only a

single strategy left. The described relation between strategies is independent of what kind of game is

played, but the actual outcome of the game is a linear function of the payo� matrix.

4 A Tra�c Intersection Example

Let us look at a tra�c situation in an intersection using give right-of-way to tra�c coming from the

right (right-hand-rule). Drivers usually act in a cooperative mode and on average have to wait half

of the time (Fig 1a). No supervisor or central control is needed to have a functional system. Rescue

vehicles, like the �re brigade or an ambulance, can however use an emergency alarm to get access to

the lane (Fig 1b). Let us suppose that if two ambulances both reach the intersection at the same time

they will crash because they cannot hear the siren from the other vehicle (Fig 1c). If other cars begin

to install sirens and behave as ambulances the whole tra�c situation will collapse. The same thing

happens if car drivers forget what is right and what is left. We treat such behavior as noise. Suppose

it takes time T to cross the intersection. If an ambulance comes across a car, it will immediately

get access to the lane. Two cars will on average need 1:5T to cross the intersection (we assume that

there are no other time consuming delays). Two ambulances will get 1:5T + qT , meaning that their

disagreement will cause some extra costs.

Two similar games provide the foundations for this discussion of the applications of game theory

in MAS: IPD and ICG. We could also have chosen, with a similar example, other PD like games like

coordination game or compromise dilemma (see [13]). We will use this tra�c intersection problem

as an example of how to distribute (time) resources using a game theoretical model. Instead of

ambulances we will talk about defecting agents that always want the resource immediately. The cars

are cooperating agents that try to solve the resource allocation problem using the right-hand-rule.
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Strategy First

move

Description

AllC C Cooperates all the time

95%C C Cooperates 95% of the time

Tf2T C Tit-for-two-Tat, Cooperates until its opponent defects

twice, and then defects until its opponent starts to co-

operate again

Grofman C Cooperates if (C,C) or (D,D) was played, otherwise it

cooperates with a probability of 2/7

Fair C A strategy with three possible states - \satis�ed" (C),

\apologising" (C), and \angry" (D). It starts in the sat-

is�ed state and cooperates until its opponent defects;

then it switches to its angry state, and defects until its

opponent cooperates, before returning to the satis�ed

state. If Fair accidently defects, the apologising state

is entered and it stays cooperating until its opponent

forgives the mistake and starts to cooperate again [14]

Simpleton C Like Grofman, it cooperates whenever the previous

moves were the same, but it always defects when the

moves di�ered (e.g. (C,D)).

TfT C Tit-for-Tat. Repeats the moves of the opponent

Feld C Basically a Tit-for-Tat, but with a linearly increasing

(from 0 with 0:25% per iteration up to iteration 200)

probability of playing D instead of C

Davis C Cooperates on the �rst 10 moves, and then, if there is a

defection, it defects until the end of the game

Friedman C Cooperates as long as its opponent does so. Once the

opponent defects, Friedman defects for the rest of the

game

ATfT D Anti-Tit-for-Tat. Plays the complementary move of the

opponent

Joss C A TfT -variant that cooperates with a probability of

90%, when opponent cooperated and defects when op-

ponent defected

Tester D Alters D and C until its opponent defects, then it plays

a C and then TfT the rest of the iterations

AllD D Defects all the time

Table 2: Description of the di�erent strategies.

a b

C2 D2 C2 D2

C1 2 (a) 5 (b) C1 1.5 (�) 2 (�)

D1 0 (c) 4 (d) D1 1 () 1.5+q (�)

Table 3: A cost matrix for the Axelrod (a) and the resource allocation (b) matrices.
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Figure 3: Outcome for the strategies in PD and

CG. A lower score means a better result.
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Figure 4: Population game without noise. Each

bar shows the percentage of the total population

for a strategy in a certain game.

score means a better result for the strategy. For the MinAx case a correlated value to the MaxAx

is obtained by adding Eavg(MaxAx) � Eavg(MinAx). The result is normalized to 1 for the sum of

all the strategies in each game. In this example, with 15 di�erent strategies, each strategy gets the

value 0:0667 on average. None of the strategies in our simulation actually analyses its score and acts

upon it. If we know the outcome of the competition between the strategies it is possible to calculate

whatever payo� values are needed. This means that there is a linear correlation between the changes

in scores between the games (see also [10]). Our choices of (D,D) are showing values near the borders

1:5 and 2:0 of the PD games and the border 2:0 of the CG. It is easy to extrapolate to another value,

if desired. For all PD games (solid and dashed lines) there is a greedy strategy having a best score,

but the result shows a large variation between di�erent strategies. In the matrices of Axelrod and

1:9 PD, the strategies Davis and Friedman are doing best, while in 1:6 PD, AllD is the winner. In

CG, generous strategies are doing increasingly well with enhancements of the (D,D) value. This was

expected, since there is an increase in the (D,D) value, and a linear payo� function was used.

6 A Population Tournament

Up until now nothing has been said about what happens if the number of agents within each strategy

is allowed to vary. Maybe some vehicles after an unsuccessful trial want to change to a better strategy

and ultimately �nd an optimal strategy for crossing the intersection. For our purposes it does not

matter if we actually have ambulances and cars or if the vehicles behave like an ambulance in one

intersection and as a car in another. A population tournament was held, letting each game continue

until there was a single winning strategy left, or until the number of generations exceeded 10; 000.

For most of the games, one strategy won before reaching this limit (3150 generations were required

on average). Each payo� matrix was used 100 times and the same (D,D) values were used as in the

previous example. There were only four strategies not winning a single game (Fig 4). The most

successful strategy was Friedman, which won the most games for three out of �ve di�erent (D,D)

values. Together with Davis, also a successful strategy, it belongs to the family of greedy strategies.

For the PD part of the game TfT was successful. The generous strategies Tf2T, Grofman, Fair, and

Simpleton form a rather successful family for the CG part. In Axelrod's matrix, the greedy strategies

Davis and Friedman, together with TfT, are the winners. Notice that, because of the zero-sum nature

of the game, all winners must become even-matched at the end. The initial observation of di�erent

kinds of strategies shows us how the strategies reached this even-matched state, and eventually why
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Figure 5: The four most successful strategies in

PD games with increasing noise.
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Figure 6: The �ve most successful strategies in

CG games with increasing noise.

they are successful.

7 Adding Noise

In the next simulation, we introduced noise on four levels: 0:01, 0:1, 1:0, and 10%. This means that

the strategies changed to the opposite moves for this given percentage. The presence of uncertainty

makes a huge di�erence as to which applications our results might have, and several writers (cf., e.g.,

[15]) have argued for the fact that noise as used here is an adequate representation of uncertainty. In

Axelrod's simulation, TfT still won the tournament when 1% chance of misperception was added [3].

In other simulations of noisy environments, TfT has instead performed poorly [5]. The uncertainty

represented by the noise reduces the payo� of TfT when it plays itself in the IPD. Instead of looking

at all the di�erent games we formed two di�erent groups: PD, consisting of the Axelrod, 1:6D and

1:9D matrices, and CG consisting of 2:1D, 2:4D and 3:0D matrices. For each group we examined the

�ve most successful strategies for di�erent levels of noise. Fig 5 and 6 show these strategies for PD

and CG when 0, 0:01, 0:1, 1:0, and 10% noise is introduced.

Among the four most successful strategies in PD there were three greedy and one even-matched

strategy. In all, these strategies constituted between 85% (1% noise) and 60% (0:1%) of the population.

TfT was doing well with 0:01% and 0:1% noise, Davis was most successful with 1% noise, and AllD

with 10% noise. Three out of �ve of the most successful strategies in CG were generous. The total

line in Fig 6 shows that �ve strategies constitute between 50% (no noise) and nearly 100% (0:1%

and 1% noise) of the population. TfT, the only even-matched strategy, was the �rst strategy to

decline as shown in the diagram. At a noise level of 0:1% or more, TfT never won a single population

competition. Grofman increased its population until 0:1% noise, but then rapidly disappeared as

noise increased. The same pattern was shown by Simpleton that declined after 1% noise level. Only

Fair continued to increase when more noise was added, making it a dominating strategy at 10% noise

together with the greedy strategy AllD.

8 Conclusions

Having illustrated the concepts of generous, even-matched, and greedy strategies we now return to the

four questions posed in section 2. Which kinds of strategies are involved? Each strategy involved can

be described using a \�ngerprint" for each agent with a certain amount of (C,D) and (D,C) forming

generous, even-matched, or greedy strategies. A new environment involves a new �ngerprint for each
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agent. Which kinds of games are played? The outcome of the game will depend on the payo� matrix

involved. With the given interpretation of generous and greedy strategies it is natural to look at PD

like games because they consist of co-operating and defecting behaviors. Di�erent PD and CGs are

the result of changes in the (D,D) value. For a certain set of strategies there is a linear correlation

between the score of (D,D) and the score of each strategy. What does a population of strategies look

like? A successful strategy has to do well against itself so, if the cost of the (D,D) value is high,

we should expect generous or even-matched strategies to be successful. In CGs, cooperation proved

to be increasingly fruitful, following an increase in the (D,D) value from 2.1 over 2.4 to 3.0. For

strategies competing in a round-robin tournament, greedy and even-matched strategies did well in

PD games, with Friedman, Davis, and TfT outscoring the other strategies in our tra�c intersection

example. What happens if the agents are uncertain about how to react against a strategy? We looked

at an uncertain environment, free from the assumption of any existing perfect information between

strategies, by introducing noise. Generous strategies were dominating the CG while greedy strategies

were more successful in PD. In PD, TfT was successful with a low noise environment and Davis and

AllD with a high noise environment. Fair was increasingly successful in CG when more noise was

added. We conclude that the generous strategies are more stable in an uncertain environment in CG.

Especially Fair and Simpleton were doing well, indicating these strategies are likely to be suitable for

a particularly unreliable and dynamic environment. The same conclusion about generous strategies in

PD, for another set of strategies, has been drawn by Bendor ([6],[5]). In our PD simulations we found

TfT being a successful strategy when a small amount of noise was added while greedy strategies did

increasingly better when the noise increased. This indicates that generous strategies are more stable in

the CG part of the matrix both with and without noise. Given these results, and our chosen example,

we recommend resource allocation agents to adapt a co-operating, generous strategy when the cost

for a collision is high, or when di�erent agents cannot be certain of the outcome of the game.
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Abstract

This work introduces and explores the potential of using intelligent agent based modeling and
simulation as a tool for examining the complex interactions between recreators and the environ-
ment, and interactions between recreators as a means to improving the our understanding of the

recreational use of wildland settings. In this research the concept of rule-driven autonomous agents
as surrogates for human visitors is introduced. Agents are designed to represent the actions of the
individual recreators (hiking, mountain bike riding, and pink jeep tour out�tters). Behavioural

rules are derived from visitor surveys and interviews conducted in Broken Arrow Canyon, Ari-
zona. The autonomous agents can be seen to dynamically move over a GIS based model of the
Broken Arrow landscape. Line-of-sight calculations determine whether an individual agent is able
to `see' other agents and are used as method to record `actual' and `perceived' encounters with

other agents. Using agent location maps combined with the underlying GIS data the agents can
be observed moving across the landscape, pausing, changing pace, lingering at a view-point etc.
A discussion focuses on analysing the resulting behaviours found in these simulations and addi-

tionally to explore the inuence of alternative trail alignments on recreator movement, congestion
and crowding. Some potential future directions for this research are discussed.

1 Introduction

Recreational uses of forest lands are among an extensive array of commodities and amenities that are

increasingly demanded of forest managers. An in depth understanding of the relationships between

recreational and other important uses is essential to e�ective ecosystem management[42]. Within

the human dimension of ecosystem management, recreation and amenity uses of forest lands and the

associated bene�ts of those uses, constitute an important component of management decisions. With

the recent interest in the human dimension of ecosystem management, new opportunities are provided

to improve upon recreation theory by developing new methods to collect, assess, model and simulate

spatially relevant data of recreational use, needs, desires and behaviors in forest settings over time

and incorporate these assessment methods into an ecosystem modeling framework.

The recreation assessment of forest lands in ecosystem management requires the interaction of

four models: a model of desired recreation settings; a model that expresses the outcomes of recreation
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behavior in those settings; a model of recreation behavior that predicts the number of users per unit

of time in those settings and a model that minimizes conicts within and between recreation groups

from which personal, social, and economic value estimates can be made. The unique character of the

recreational use of forest lands both requires this approach and makes it achievable[43].

While technology and it's applications are growing by leaps and bounds, there still seems to be

a considerable lack of knowledge and confusion in the area of recreation behavior in forest settings.

The spatial orientation and temporal nature of encounters, conicts, psychological states, experience

opportunities and associated bene�ts between and within groups of recreators is still not well un-

derstood. Various authors[17, 33, 27, 50, 34, 45, 40, 32, 11, 16] have all focused on the the nature

and extent of conict between members of speci�c recreation groups, none to date have examined

conict from a spatial and temporal perspective. Work by [30, 29, 38, 47, 26, 52, 39, 49] have em-

ployed a variety of techniques including on-site surveys, recording devices and an experience sampling

method[8, 28, 9, 10, 37] to quantify immediate psychological states and desires to get at this issue of

dynamic, multimodal experience. Results of studies have varied but shed new light on the nature of

the recreation experience. Recent work by [30, 29, 26] are among the few to have successfully used

these methodologies to analyze a recreators dynamic experience patterns on-site and found that they

varied predictably over the course of an outing and were strongly inuenced by site characteristics

and site management.

Recreation use and the values humans place on the amenity of public lands constitute an impor-

tant component of management decisions and yet very little is known about the dynamic nature of

the recreation experience, where recreators go in the environments, where conicts occur and when

crowding has a negative e�ect on the recreation experience and outcomes. The work presented in this

paper is guided by the following ideas:

� That decision makers, such as natural resource managers would bene�t from inexpensive, simula-

tion techniques that could be utilized to explore dynamic recreation behavior, develop thresholds

of use and test ideas or theories, before expensive management plans are implemented;

� If resource managers are to have con�dence in the use and results of these simulations it is crucial

that the design of the behavioral systems which are utilized in the simulations are grounded in

observations and data captured of actual human behavior in the physical settings in which they

naturally occur; and

� Integrated decision support models that explicitly relate the manageable characteristics of forest

lands to recreational uses would greatly improve incorporation of the human dimension into

ecosystem management.

2 Redrock Country | Expanding Pressures From Recreational

Use: A Case Study

The focus of this paper is to present research undertaken to develop a new form of intelligent decision

support and simulation system (IDSS) to assist natural resource managers in assessing and managing

dynamic recreation behaviour, social interactions and resulting conicts in wilderness settings using

arti�cial intelligent agents in the Sedona Ranger District of the Coconino National Forest, Sedona,

Arizona. The focus of this research is to utilize simulation techniques for exploring the complex

interactions between recreators and the environment, and interactions among recreators as a means

to improving the foundation of recreation theory.

Sedona, Arizona has been used in this work because it is typical of many special places which

have become ever increasingly popular destinations for local, national and international tourists. The

Sedona/Oak creek ecosystem covers nearly 200,000 acres from Sycamore Canyon on the West, to I-17

on the east; from beyond the Mogollan Rim on the north, to Beaverhead Flats and the savanna on

the south. Sedona is well know by New Age enthusiasts for its \Spiritual Vortex". This, combined
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with the close proximity to the Grand Canyon, Monument Valley and the Navaho and Hopi Indian

Reservations, make it an important tourist destination by visitors around the world.

Broken Arrow Canyon near Sedona, Arizona was used to capture visitor use data and demonstrate

the prototype software to simulate conicts between recreation groups over time. The Canyon is

popular for day hikers, mountain bikers and people on commercial jeep tours because of the unique

spectacular desert scenery of eroded red sandstone. The popularity of this canyon is a problem common

to many popular wildland recreation destinations. People are \loving the place to death" by overuse.

This overuse not only has negative impacts on the landscape but also in the quality of the experience

people have when they visit. Crowding, conicts between hikers, mountain bike enthusiasts and

jeep tours can create negative experiences in what should be a spectacular and memorable landscape

setting, but very little is known about where, why and how these impacts are occurring.

U.S. Forest Service who manages the resource, have been seeking guidance on what actions to take

to protect the environment and provide the best possible recreation experience for a increasing diversity

of visitors. While conventional survey techniques and public meetings have assisted in acquiring

a better understanding of use, the spatial and temporal nature of the recreation experience still

remain grossly misunderstood. To date, frameworks such as Recreation Opportunity Spectrum (ROS),

Limits of Acceptable Change (LAC) and the growing interest in Bene�ts-Based Management (BBM)

have provided managers with guidelines to assess the recreation opportunities, associated bene�cial

outcomes and identify where human-induced changes occur and to what degree they are acceptable.

However, there no tools currently available for natural resource managers to study and quantify the

complex spatial dynamic interactions and resulting impacts of recreational use over time.

The Recreation Behavior Simulator (RBSim), outlined later in this paper was developed to address

these complex issues by using computer simulation technology. By simulating human behavior in the

context of geographic space, it is possible to study the number and type of interactions that visitors

will have within each group and between groups. Agent based modeling techniques are used to instill

human-like behavior into arti�cial agents to explore recreation planning alternatives. If resource

managers are to have con�dence in the use and results of agent-based simulations it is crucial that the

design of the behavioral systems of these agents is grounded in observations of actual human behavior

in the physical settings in which they naturally occur. From the recreation behavior, management

and conict assessment perspective, a system of this nature could provide a better understanding

of recreation conict and provide a mechanism to test and assess new assumptions and theories of

recreation behaviour (goal interference theory) and bene�cial outcomes of experiences. In addition,

the results of the simulations yield spatially-explicit, social setting data, could ultimately be used to

strengthen and improve the overall predictability and mapability of ROS.

3 Rationale for Development of the Agent-Based Simulation

Environment

There is a growing interest in the research community for using GIS for modeling spatially-explicit

dynamic processes [2, 25, 46, 31, 22, 24, 4, 48]. The use of Individual-Based Models (IBM) is one

of the popular approaches to modeling spatially-explicit ecological phenomena. IBMs according to

[46] are \organisms-based models capable of modeling variation among individual and interactions

between individuals."

IBMs o�er potential for studying complex behavior and human/landscape interactions within

a spatial framework. Since spatial information about a phenomena is stored on a georeferenced

coordinate system, space within a grid is implicit and relative to the origin of the grid [46]. IBMs o�er

some basic advantages over current cellular automata and other dynamic spatial modeling approaches

for examining spatially explicit phenomena. Since space is continuous and location is explicit in IBMs,

individuals can be simulated, independent of the environment. This provides the modeler with the

ability to de�ne an individual's behavior, personality traits and interaction rules when encountering

other individuals. Computer modeling of most ecological phenomena evolves in simulated time. Since
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space is continuous and individuals are represented independently, temporal and spatial variability

in IBMs can be handled asynchronously (individually updated) versus synchronously (global update)

common to most raster-based GIS systems.

One form of individual-based modeling approaches that has recently gained popularity is arti�cial

intelligent agents. Intelligent agents or what is referred to as `agent-oriented programming' is being

used to capture behavioral conditions and sets of intercommunication among and within agents that

coexist in a environment. Several researchers [35, 41, 36, 51, 12, 5, 4, 24, 3, 1, 44, 19, 18] have

taken advantage of the spatially-explicit IBMs, agents and GIS. Each of these researchers uses various

techniques to build linkages between the simulation models and GIS.

Only recently have researchers seeking new ways to understand human/environment interactions

been exploring simulation as a tool for developing models of human behavior. Recent studies by [15, 20,

7] clearly demonstrate the potential for agent-based modeling techniques to examine human/landscape

interactions. These studies utilize a general model of multi-agent simulations based on computation

agents that represent individual organisms (or groups of organisms) in a one to one correspondence.

These studies seek to understand the process of evolution in the study of ecological and sociological

systems. As Drogoul et al.[15] state \we are interested in the simulation of evolution of complex

systems where interactions between several individuals at the micro level are responsible for measurable

general situations observed at the macro level. When the situation is too complex to be studied

analytically, it is important to be able to recreate an arti�cial universe in which experiments can

be done in a reduced and simulated laboratory where all parameters can be controlled precisely."

This work and others examining emergent processes in societies is extremely exciting and is yielding

interesting results that would have been hard to obtain without the use of such simulations.

Few studies to date that have explored emergent behavior in individuals or societies have utilized

the power of GIS for representing the spatial worlds they reside in and interactions with those worlds.

What is surprising is that none of these studies have taken advantage of the power of GIS. Since

human behavior is inherently spatial, GIS can provide the worlds that individuals could respond to

and function within. Currently, there is no GIS system with IBM capabilities. Dibble[13] states that

\individual-based models do currently exist (Santa FE Institute, Swarm1) and in many ways these

systems may o�er far deeper insights into human geographic phenomena than any current GIS."

It is clear from an evaluation of current research using spatially-explicit IBMs, reactive agents

and GIS to model animal/ landscape interactions that they o�er a powerful alternative to previous

modeling techniques for exploring emergent, complex, evolutionary processes. The ability to model

the di�erences among groups, local interactions and variability in time and space, as well as the

complex, decision making process of an individual, make IBMs an ideal technique for exploring human

/ landscape interactions.

4 Capturing and De�ning Personality Traits and Interaction

Rules for Simulated Recreators

To represent and simulate an individual's behavior independent of the environment it requires an

understanding of their personality traits (which include personal goals/intentions, expectations, length

of visit, age etc.) and rules which de�ne how they move and interact with other individuals they

encounter and to the physical world or landscape where they are engaging in their favorite activity.

This study consists of three phases; �rst to capture and analyze recreational use data for providing

arti�cial agents with personalities and rules that closely reect actual recreator behavior; second the

development of an GIS-based agent simulator for mimicking recreator behavior overtime; �nally testing

of the agents in their simulated world under both typical use conditions and imploring alternative

management strategies.

1http://www.santafe.edu/projects/swarm
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4.1 De�ning Personality Pro�les of Recreators from Visitor Use Data

An on-site visitor use survey was employed before and after recreational outing over a nine month

period to capture data on recreational use, desired bene�cial outcomes and conicting recreational

uses in the canyon. Trip motives, expectations, use density, reported contacts and place of encounters

have been identi�ed as key factors in a satisfactory recreational experience (Scenic Spectrums Pty

Ltd. 1995). A binary measurement was used to solicit response on the type of bene�ts that were

desired (trip motives and expectations) during their visit and to what degree they were able to obtain

them. The focus was on recreation as essentially goal-directed behavior [14]. Expectations have

been acknowledged as extremely important to goal-oriented approaches to recreation behavior. This

measure coincided with Jacob and Schreyer's [34] goal interference de�nition of conict. Visitors were

asked if a range of bene�ts were desirable (goals and intentions) and whether they could obtain those

bene�ts over time (goal interference). The bene�t types used in this study are well documented in

Bruns et al. [6] and Lee and Driver [38], based on research undertaken on other public lands. Desired

bene�ts such as getting away from crowds, reduced stress and physical �tness are strong indicators

of recreational satisfaction. Crowding has been shown to be one of the major predictors of user

dissatisfaction. The survey was used to identify anything that either made the setting an ideal place

for achieving, or interfered with acquiring the desired bene�ts. So negative detractors and the inability

to obtain desired bene�ts together are used to measure goal interference and conicts, and imply an

inability to obtain desired recreational experiences leading to unsatisfactory outcomes [21, 23].

To derive meaningful recreator pro�les of the visitors to Broken Arrow Canyon, cluster analysis

�rst run on the recreation activity respondent data to isolate visitors by activity groups and then

later used to aggregate visitors within each group based on desired bene�ts (goals and intentions).

K-Means Cluster analysis allows one to specify the number of clusters desired or in the case of this

research to explore the number of signi�cant recreator types that could be found within each activity

group. In addition, cross tabulation was used to calculate the frequency of which respondents within

the classes derived previously identi�ed the signi�cance of each bene�t type. Similarly they were

asked to indicate their ability to obtain each of the bene�ts. This measure provides an indication of

how often the respondents loaded on the bene�t types by cluster and what particular bene�ts could

not be obtained. This analysis was subsequently used to determine statistically relevant number of

agent types within each activity class for subsequently programming arti�cial intelligent agents with

these identical behavior traits. Since it is possible to derive hundreds of agent personality pro�les,

for purposes of demonstrating the method, this research aggregated agent classes into a reasonable

number for �nal implementation.

Of the (n=1041) visitors sampled, three signi�cant recreation use groups were identi�ed; day-use

hikers (n=337), mountain bikers (n=393) and Commercial Jeep out�tters (pink jeep tours) (n=319).

While there was an extensive amount of visitor use data collected during the �eld work, only some

is pertinent to this particular paper. For more detailed demographic data see Gimblett[21]. While

there could be many combinations of personality traits derived from the visitor data collected, to

demonstrate the utility of the agent modeling system the recreator patterns resulting from the cluster

analysis were aggregated into two unique types for both the hikers and mountain bikers. These two

types are referred to in this work as either a `landscape' or `social' recreator type. Each has signi�cantly

di�erent desired bene�ts of their recreation experience.

Figure 1 illustrates the di�erences in the two recreator types. A landscape recreator or agent type

is one that seeks out landscapes that are physically challenging, avoid crowds subsequently leading to

a reduction in stress. This recreator type typically avoids others at all costs. This is evident by the

extremely high desire to avoid crowds. In the exit interviews, recreators that were representative of

this agent class indicated that they would only stop in locations where there are no other recreators and

move as fast as possible along the trails. Physical exercise was a strong motivation in this recreation

group and common to both hikers and mountain bikers as can be seen in Figure 2. These recreator

types fall within the personal well being and health bene�ts class as identi�ed in Bruns et al. [6].

A social recreator or agent type is more group oriented, one who seeks out those landscapes which
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Figure 1: The Frequency of Responses of Aggre-
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Figure 2: The Frequency of Responses of Aggre-

gated Hikers to Desired Bene�ts

Hiker Social Agents Hiker Landscape Agent

(Cluster 1,2,3) (Clusters 4,5)

of Agents Ratio of Hikers of Agents Ratio of Hikers

Age Group 1{20 10 3% 13 3%

Age Group 21{40 101 26% 77 20%

Age Group 41{60 73 18% 64 17%

Age Group > 60 24 6% 29 7%

Proportion of Agents 53% 47%

Table 1: Aggregation of Hiker Agent types for Simulations based on Bene�t Preferences and Age

Group

are not necessarily physically challenging but tend to build self-con�dence, provide more opportunity

to learn more about the natural and cultural history of the area and interact with others who share

these goals. This is evident in Figures 1 & 2 where their desires to obtain certain types of bene�ts are

not as strong as those representative of landscape recreators. Social agents did not mind encountering

other social recreators along the trail in the case of either hikers or mountain biking. During the exit

interviews, recreators that represented this class indicated that liked social interaction while engaging

in their favorite recreational activity and will spend longer periods of time wandering through the

landscape, sitting in special locations, and contemplating life. This was again true of the mountain

bikers as seen in Figure 2. Both of these recreator types have been identi�ed over and over again

in the applied recreation literature. Tables 1 & 2 outline the aggregation of agent clusters and their

associated age groups into agent classes for both Hikers and Mountain Bikers. For more details on

Biker Social Agents Biker Landscape Agent

(Cluster 1,2,3) (Clusters 4,5)

of Agents Ratio of Bikers of Agents Ratio of Bikers

Age Group 1{20 41 4% 60 6%

Age Group 21{40 393 39% 426 42%

Age Group 41{60 38 4% 46 4%

Age Group > 60 4 .5% 1 .5%

Proportion of Agents 47.5% 52.5%

Table 2: Aggregation of Biker Agent types for Simulations based on Bene�t Preferences and Age

Group
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Figure 3: The Frequency of Responses of Aggre-

gated Hikers Ability to Obtain Bene�ts
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Figure 4: The Frequency of Responses of Aggre-

gated Bikers Ability to Obtain Bene�ts

the statistical analysis see Gimblett[21].

Figures 3 & 4 represent the same recreator agent classes as presented in Figures 1 & 2 but in

response to the questions asking their ability to obtain the type of bene�ts that they desired. Figure

3 illustrates there was a reasonable agreement by both groups of recreators that they could satisfy

their desired goals, except in the case of the landscape hikers who could not avoid crowds as opposed

to the social agents who could or it simply did not matter to them. Figure 4 reports on the mountain

biker's ability to obtain their desired bene�ts di�ered. The landscape bikers reported an inability to

obtain their desire physical challenge bene�ts and strongly agreed that it was too crowded. Crowds

could be the reason they were unable to achieve the physical bene�t. The social bikers seemed to

agree that most of their desired bene�ts could be obtained.

While these results are certainly not conclusive, they do provide a method for assessing the goals

and intentions of the recreators visiting Broken Arrow Canyon and also provide a measure of how well

they were able to meet those goals or satis�ed with there recreational experience. While none on the

visitors indicated they were totally unsatis�ed with their experience, many seemed frustrated with

the numbers of encounters they had with other recreators using the canyon.

5 Rules for Simulating Individual Behaviors and their Inter-

actions with each other the Physical World

Rules for providing the simulated agents with social behaviors of human recreators were derived from

what respondents told us about their experiences in the surveys, statistical analyses presented earlier

and through interviews following their outing. The respondents were all asked to explain the types of

behaviors that they exhibited along the trails when encountering other recreators. While the surveys

clearly documented that visitors spent a minimum of two hours performing their activities, the desired

bene�t questions provided the goals and intentions for their visit. The maps provide a clear indication

of where they rested, their �nal destination or where they stopped to view cultural and geologic

features. Many of those recreators that subsequently fell into the social agent class indicated that

they stopped at all the locations regardless of the numbers of other hikers or bikers that were present

and stayed primarily on the appropriate trail for their activity. Some of mountain bikers and hikers

who fell into the landscape agent classes indicated in both the survey and later in the exit interviews

that they would stop at the cultural and geologic features only if there were a limited number of other

recreators present. They also indicated that they would go out of their way to pass others along the

trails quickly and avoid them if possible.

For the testing of the prototype agent simulator, Table 3 presents six rules were developed that

conformed to what was learned about the intensity of use and interactions of both social and landscape
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Behaviour Rules for Recreator Agents

Rule 1 Hiker and mountain biker agents rest when down to 25% energy

level

Rule 2 Landscape agents, pass other agents in front travelling 25% slower

than you if you have at least 50% energy left;

Rule 3 Hiker and mountain biker landscape agents, slow down at land-

scape features if no other recreators;

Rule 4 Hiker, mountain biker and jeep agents stop at all landscape fea-

tures;

Rule 5 Social hiker agents change their velocity to match other social

hiker agents they encounter

Rule 6 Hiker and mountain biker agents will not stop at features if more

than �ve other agents are present.

Table 3: Mobility Rules for Agents

Landscape Agents Social Agents

Behaviour Rules

Hiker Agents Rules 1, 2, 3, 6 Rules 1, 4, 5

Mountain Biker Agents Rules 1, 2, 3, 6 Rules 1, 4, 5

Jeep Agentsa Rule 4

aThe jeeps are assumed to move continuously throughout the landscape and stop at all features for interpretation

Table 4: Rules that Modify Agent Behaviour

types of recreators using Broken Arrow Canyon. To accommodate the solitude seeking and crowd

avoidance desired bene�t of the landscape recreator, a rule was developed that prohibits a landscape

agent from stopping if there are more than �ve other agents present at the cultural or geologic features.

Landscape agents are programmed to avoid crowds at all costs. They will speed up if they have 50%

energy remaining, to pass other agents on the trails if they are within �fty meters and travelling

slower. This rule conforms to what the some of the hikers and mountain bikers told us about their

trail experiences and adds to the physical challenge that they sought.

To accommodate the needs of the social hiker and biker visitors, the corresponding agents are

programmed to hike or ride to areas in the simulated landscape to learn more about natural features

and to socialize with other agents. The agents in these classes generally spend at least two hours

performing that activity. They have lower desires for extremely challenging physical �tness, but will

seek out areas where they can spend time, such as at the cultural or geologic sites. If a social agent

encounters a small group or perceives the ability to catch up to another social agent they will increase

their speed to do so. They will remain with them throughout the duration of the simulation, unless

they expended too much energy and will be forced to slow down and rest. These rules conform to

what the hikers and mountain bikers reported about the type of behaviors they exhibit on the trails.

Social agents will stop at all cultural or historic features no matter how many other recreators are

present.

Since there are a four di�erent recreator age groups being represented in the simulations, they all

will move at di�erent rates along the trail, some will run out of energy sooner (older ones) and will

be forced to rest. The behavior rules for these social agents (rules 1, 4 & 5) are summarized in Tables

3 and 4.

The behavior of individuals involved in the jeep tours are not as robust as those hiking and

mountain biking. Jeeps contain between four and six visitors on each trip. These visitors spend

from two to three hours on the jeeps interacting with the driver and other tourists. Jeep agents are

modelled as a group of passengers in one jeep which vary their jeep speed according to the topographic
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Negative Encounters Between and Within Recreator Groups

Other Hikers/Hikers Other Bikers Other Jeeps Freq. Respa

of Hikers Freq. of Bikers Freq. of Jeeps Freq

Hikers 70 29% 75 30% 101 41% 246/338 (72%)

Bikers 80 58% 6 4% 53 38% 139/393 (35%)

Total 150 81 154

aThe number of times respondents identi�ed negative detractors (conicts) per total number of respondents in that

group

Table 5: Recreation Conicts Between and Within Recreator Groups

conditions. They speed up or slow down according to the degree of slope. Jeep agents conform to

only one action rule that de�nes their behavior and that is Rule 4 (Table 3) to stop at all cultural or

geologic features. The time they spend at these features is predetermined and conforms to what the

jeep tour drivers typically spend at each location.

6 Simulating Conicts

Solitude seeking is an important reported desire, goal or expectation in this study. The degree of

interference with that goal is related to the number of encounters one has with other recreators. Table

5 illustrates that perceived negative encounters with certain types of recreators have some impact on

the experience. The degree of that impact is not yet known. However, from the comments on the

survey such as \seeing too many people", \too many people", \too many jeep tours on trails", "seeing

jeeps along the trails", suggests that both visual and physical encounters are important measures of

the degree to which a goal or desired bene�t is interfered with. Based on the fact that both the

hikers and mountain bikers reported that they were not able to obtain a crowd avoidance bene�t, and

the number of negative encounters that were reported, it was hypothesized that visual and physical

encounters with other recreators interferes with their ability to acquire those desired bene�ts. For the

purposes of this research, visual encounters within and between agent types are used as a measure

of goal interference or the inability to achieve a desired or perceived bene�t. The hypothesis being

that the higher the degree of crowding induced encounters, the ability of the agent to obtain some

of the other desired bene�ts may decline, lessening the perceived quality of the overall recreational

experience.

From a management perspective what is needed is to identify the spatial locations along the trails

where there are signi�cant visual encounters. To accomplish this task, each agent keeps track of the

number of encounters it has in each cell along the trail and also stores the type and number of visual

encounters it has with other agents on other trails. These encounters are summarized, graphed and

mapped to examine areas where there are levels of encounters that interfere with the recreator or

agent's goal to obtain a desired bene�t.

7 RBSim | Recreation Behaviour Simulator

RBSim is a computer program that simulates the behavior of human recreators in high use natural

environments. Speci�cally RBSim uses concepts from recreation research and arti�cial intelligence

(AI) and combines them with geographic information systems (GIS) to produce an integrated system

for exploring the interactions between di�erent recreation user groups within geographic space. RBSim

joins two computer technologies:

� Geographic Information Systems to represent the environment

� Autonomous human agents to simulate human behavior within geographic space.
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RBSim is experimental at this stage, but demonstrates the potential of combining the two tech-

nologies to explore the complex interactions between humans and the environment[22, 24, 21, 23].

The implications of this technology should also be applicable to the study of wildlife populations and

other systems where there are complex interactions in the environment.

RBSim uses autonomous agents to simulate recreator behavior. An autonomous agent is a com-

puter simulation that is based on concepts from Arti�cial Life research. Agent simulations are built

using object oriented programming technology. The agents are autonomous because once they are

programmed they can move about the landscape like software robots. The agents can gather data

from their environment, make decisions from this information and change their behavior according to

the situation they �nd themselves in. Each individual agent has it's own physical mobility, sensory,

and cognitive capabilities. This results in actions that echo the behavior of real animals (humans) in

the environment.

The process of building an agent is iterative and combines knowledge derived from empirical

data with the intuition of the programmer. By continuing to program knowledge and rules into the

agent, watching the behavior resulting from these rules and comparing it to what is known about

actual behavior, a rich and complex set of behaviors emerge. What is compelling about this type of

simulation is that it is impossible to predict the behavior of any single agent in the simulation and by

observing the interactions between agents it is possible to draw conclusions that are impossible using

any other analytical process.

RBSim is important because until now, there have been no tools for recreation managers and

researchers to systematically investigate di�erent recreation management options. Much of the recre-

ation research is based on interviews or surveys, but this information fails to inform the man-

ager/researcher how di�erent management options might a�ect the overall experience of the user.

For example if a new trail is introduced, we might expect that conicts might be reduced, but to

what extent? If we go to a system of scheduling use, what is the impact on the number and frequency

of users? More importantly when you have di�erent, conicting recreation uses, how do di�erent

management options increase or decrease the potential conicts?

None of these questions can be answered using conventional tools. These questions all pivot

around issues such as time and space as well as more complex issues such as inter-visibility between

two locations. By combining human agent simulations with geographic information systems it is

possible to study all these issues simultaneously and with relative simplicity.

8 RBSim Object Model

RBSim is developed using object oriented programming technology. Figure 5 shows a diagram of the

principle components of the simulation program.

RBSim is comprised of �ve major components:

1. A Graphical User Interface for Model Parameterization. This is comprised of a set of forms

for setting values for the remaining components described below.

2. Output Classes including:

(a) the video display showing a shaded relief map as a backdrop to the agent type and

location displayed as graphic objects during the simulation run, and

(b) a �le object for saving simulation statistics.

3. Object Classes, including

(a) the recreator class which represents a generic recreator class,

(b) a trail class which represents the trail as a list which contains the location, elevation and

viewpoints at each trail location, and
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Figure 5: Recreation Behavior Simulation System (RBSim)

(c) the visibility class which provides the visual system for the recreator class

4. The GIS database which is used to parameterize the trail and visibility classes

8.1 Model Parameterization

RBSim allows the user to specify the following parameters for the recreation agents:

1. The total number of agents in each class (landscape hikers, landscape bikers, social hikers, social

bikers, and jeeps)

2. The age distribution of recreators in the hiker and biker classes

3. The frequency within which each recreator begins a journey through the trail system.

8.2 The Recreator Class

The recreator class is the most complex object class. It is comprised of a set of properties for age

and personality type (landscape or social agent). These properties determine the behavioral rules the

agent will follow and the mobility and energy levels of the agent. Behavioral rules relate to how the

agent responds to views, and the number and type of other recreation agents. These rules may result

in the agent changing speed to overtake or catch up with other agents, slowing down and stopping to

rest or spend time at important landscape features or viewpoints.

Hiker and Bike agents also have a system of energy levels programmed. Energy levels and speed

of travel are related to the age of the agent. Very young, and older agents will move more slowly

than agents in other age groups. In addition, as energy is expended during the simulation, these

agents will also need to rest to rebuild energy levels. The length of resting time is determined by

the estimated time it takes agents of di�erent age groups to recover. Energy expended is calculated

incrementally as the recreator moves along the trail. Uphill travel expends more energy than downhill

travel. Resting times are randomized between preset time thresholds to represent variability between

real human recreators.
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8.3 The Visibility Class

Since much of the perception of crowding is based on visual contact as well as physical contact with

other recreationists, a vision system is designed for the agents. The visibility class is a modi�cation of

standard GIS line of sight or intervisibility analysis. To reduce the computations required to check for

visibility between two points, the visibility class checks for inter-visibility only between points occupied

by other recreators referenced in the trail object. The line of sight is calculated taking into account

intervening screening e�ects of topography and vegetation from the GIS databases for elevation and

forest cover.

8.4 The Trail Class

Trails are speci�ed for each agent, for each run. The trails are stored in the trail object which is

constructed as a linear list of cells derived from a grid based GIS. For each trail cell the distance from

the trail head, the elevation, and landscape features associated with the cell is stored. During the

simulation run the trail object also stores the number recreators in each cell. This data structure is

designed to minimize the computing time for agent navigation through the trail system. All agents of

the same class (hiker, biker or jeep) share the same trail object. The trail object therefore acts as a

\collective memory" for the agents in that respective class. Each agent can reference the trail object

to determine the location of other agents on the trail and to determine the trail conditions. As the

agent moves from one cell to the next, it de-references its location from the last cell (by subtracting

one from the recreator count �eld for that cell) and references its location in the next cell. Since

the hikers, bikers and jeeps follow di�erent trails a unique trail object is created for each recreation

type. To test management alternatives for new trails, the user may specify di�erent trail �les for each

simulation run.

8.5 The Runtime Simulation Engine

The RBsim runtime simulation engine runs in discrete time steps. At each time step in the simulation,

each recreator class (hikers, bikers and jeeps) is evaluated to determine if a new instance (agent object)

of that class should be created. For each class of recreator a timer is set which begins incrementing

from the start of the simulation run and is reset to zero each time a new recreator agent is generated. In

the model parameterization the minimum and maximum times between agents is speci�ed. A random

time is generated between the minimum and maximum time each time a new agent is generated. A

new agent of the respective class will be generated once the timer reaches the randomly generated

time.

The new agent object is generated as an instance of the generic recreator class. When the agent

is created, properties are set for age, personality, and agent type. These properties are set based on

a randomly generated number (between 0 and 1) which sets the probability for each property. For

instance, if 25 percent of the biker agents are of the landscape personality type and 75 percent are of

the social personality type, then if the random number is between 0 and .25 the simulation engine will

generate a landscape bike agent. If the number is greater than .25 and less than or equal to one, the

simulation engine will generate a social bike agent. This same strategy applies to the age distribution

as well.

Recreator Agents of the hiker, biker and jeep types are placed in collections for each type. The

simulation engine then tracks each agent in each collection. Since the simulation engine is running

on a synchronous clock, the order in which the agents are executed will a�ect consequences such

as crowding and visibility. In order to avoid order e�ects from executing agent movement in a set

sequence, the sequence is randomized within each collection for each iteration of the simulation. Each

agent has a single method called \Move" which triggers the execution of the internal rules, energy

levels and mobility for that agent. Once the agent has completed execution of all its behaviors for

that time step, the runtime simulation engine then executes the move method for the next agent in



200 A Complex Systems Approach to Simulating Human Behaviour Using Synthetic Landscapes

Days of the Week Visitors Frequent Canyon Time Period

Mon. Tues. Wed. Thur. Fri. Sat. Sun. AM PM

Hiker 4% 7% 5% 11% 15% 40% 18% 55% 45%

Mountain Bikers 6% 7% 4% 9% 16% 41% 17% 44% 56%

Jeeps 23% 24% 9% 4% 7% 14% 19% 40% 60%

Table 6: Frequency of Visits to the Canyon on a Weekly Basis and Time of Day

the randomized list for that iteration. This process continues in a loop until either all agents have

completed their journey or the maximum time set for the simulation run is reached.

At the conclusion of the simulation each trail object writes its contents to the output �le object.

RBsim then returns control to the user.

9 Synthetic GIS World and Inherent Spatial Assessment Ca-

pabilities for Each Agent

The synthetic world that the simulated recreators utilize is a georeferenced, raster database consisting

of 513 rows � 522 columns, each cell 10 meters square. The database consists of topography, vege-

tation, adjacent primary and secondary roads, existing and proposed trails, trail head, jeep staging

area, signi�cant geologic features and scenic stops. These geographic themes were deemed important

for this work, but many more could be incorporated as the sophistication of the modeling increases.

The approach taken in this research was to provide each agent with spatial analytical capabilities

that is imperative to them processing information necessary for functioning in the simulated worlds.

Each agent is provided with the ability to calculate distance or proximity to other agents and signi�cant

features in the landscape. Each calculates the percentage of slope from the topographic map and

whether it is going up or down hill and in turn speeds up or slows down accordingly. They utilize

neighborhood functions to identify trail cells or the location of signi�cant geologic features and scenic

stops. Most importantly each agent has visual capabilities for detecting other agents, how far away

they are and whether they can or cannot be seen. This algorithm uses forest cover and topography

as constraints to detecting other agents.

10 Applying RBSim for Simulating Typical Use Days and

Management Alternatives in the Canyon

In order to test some of the ideas and concepts presented in this research and to determine the

e�ciency of the simulation system in identifying conicting recreation behavior, a set of experiments

were constructed. During the interview and survey phase of this research, visitors to Broken Arrow

Canyon were asked in addition to the information already discussed, to record the month, day and

time that they entered the canyon.

Table 6 presents a statistical summary of the visits of those recreators sampled over the duration

of the study. As can be seen, peak times throughout the canyon are weekends. Over 40% of hikers

and bikers frequent the canyon during these time periods, while 40% visit in the morning, with 60% in

the afternoon. Week days according to our sampling were the highest for Jeep tours into the canyon.

In order to test RBSim, many simulation runs were undertaken mimicking various peak and o�-use

times to examine the dynamic interactions or recreators and resulting visual and physical conicts.

This study reports on one of those experiments, a mid weekday (Wednesday) which typically is not a

peak use period but contains a moderate number of hikers and bikers and relatively low jeep usage.

The schedule of use during that typical day is reported in Table 7.
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.

Figure 6: Runtime Simulation Interface with both the Original and Alternative Trail Layouts for

Broken Arrow Study

In order to demonstrate a potential management action such as restricting biking use on a heavily

used trail, two alternative bike trails were substituted for the original and the simulations rerun

to evaluate the di�erences in recreational use and resulting perceived conicts from all recreators

perspectives (See Figure 6).
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Wed Biker Data (AM) Hiker Data (AM) Jeep Data (AM)

10/11 1{20 21{40 41{60 > 60 1{20 21{40 41{60 > 60 1{20 21{40 41{60 > 60

9:00 1 1 0 1

9:00 2 0 0 1

9:00 0 2 0 1

9:00 2 0 0 1

9:00 0 2 0 1

10:30 1 2 0 0

10:30 1 2 0 0

11:30 0 1 0 0

12:00 2 2 0 0

12:00 1 2 0 0

12:00 3 2 0 0

1:30 0 2 0 0 0 0 6 7

Percent 38% 62% 0% 0% 0% 0% 46% 54%

Table 7: Typical mid-week entrance times by recreators into Broken Arrow Canyon
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Figure 7: Graphed Results of Hiker Encounters

with Other Agents from along Hiking Trail

Bikers Trails Sequence (cells)

7016015014013012011011

30

20

10

0

Total Hikers (vis)

Total Bikers (vis)

Total Jeeps (vis)

Trailhead Chicken Point Submarine Rock Trailhead

Figure 8: Graphed Results of Biker Encounters

with Other Agents from along Biking Trail

11 Initial Results of Simulations Runs

Table 7 is an example of mixed recreational use along the trails. Figures 7 illustrate the intensity of

hiker encounters with other agents from the hiking trails. Figure 7 illustrates a signi�cant number

of encounters with both other hikers and bikers, hikers versus other hikers and bikers and jeeps.

Encounters with bikers is high from the beginning of the simulation, peaks at Chicken Point and is

chaotic until completing the journey. Hikers, on the other hand, peak at Chicken Point and then

remain consistently high thereafter. What is of interest is that where the encounters with hikers peak,

biker encounters drop o� and visa versa.

As summarized in Table 5, over 40% of the negative encounters that occur to hikers are with jeeps

and 30% with other hikers or bikers. It is interesting that even with the number of hikers, bikers and

jeeps included in this simulation, that there are very few encounters with jeeps. On the other hand, the

high amount of conicts with bikers and other hikers may have a detrimental e�ect on the recreation

experience. But because the place, time and duration of encounters that occur between biker and

hiker agents are not consistent, this may tend reduce to accumulative impact of the encounters on

those hiking.

Figures 8 illustrate biker encounters with hikers, jeeps and other bikers from along the biking

trail. The patterns are similar to those found in Figure 7 except bike encounters steadily increase
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Figure 9: Graphed Results of Jeep Encounters

with Other Agents from along Jeep Trail
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Figure 10: Graphed Results of Hiker Encounters

with Other Agents from along Hiking Trail

Biker Alternative Trail Sequence (#1)
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Figure 11: Graphed Results of Biker Encounters

with Other Agents from along Biking Trail
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Figure 12: Graphed Results of Jeep Encounters

with Other Agents from along Jeep Trail

throughout the life of the simulation, but are not as high as in Figure 7. Biker's encounters with

hikers are more sporadic than is outlined in Figure 7 dropping o� at the end of the simulation. Like

above, there are virtually no encounters with jeeps.

Figure 9 illustrate a high number of jeep encounters with hikers and bikers and only a minimal

number of encounters with other jeeps. The encounters occurring with hikers and bikers are con-

centrated around Chicken and Submarine Rock during the last half of the trip with virtually no

encounters occurring for the �rst and last quarter of the simulation.

In summary it appears that with the increased number of hikers and bikers in the canyon that

encounters with bikers are the most dominant impact. There are very few encounters with jeeps

throughout all the simulations in experiment 4.

12 Simulations Using Alternative Bike Trail #1

As illustrated in Figure 10, selecting alternative bike trails can have a major impact on the number

of encounters that occur along the trails. It can be seen in Figure 10 that when alternative bike route

1 is used in the simulations that the number of biker encounters that the hikers will have decreases

signi�cantly to the point that they are negligible after Chicken Point. When compared to Figure 7

and summarized in Table 8, by altering the trail layout the mean number of encounters has dropped

by two thirds and the maximum number of encounters by half.

In Figure 11 the number of visual encounters with other recreators that bikers will have when using



204 A Complex Systems Approach to Simulating Human Behaviour Using Synthetic Landscapes

Exp. 4 Exp. 7 (4a) Exp. 9 (4b)

Mean Max Mean Max Mean Max

HVIS

Hike 7.0 20 6.9 20 6.9 22

Bike 6.4 25 2.1 13 2.6 10

Jeep 2.9 15 2.7 17 2.7 18

BVIS

Hike 5.1 18 1.4 17 1.9 18

Bike 5.5 24 4.5 12 2.0 12

Jeep .51 7 .41 8 .67 7

JVIS

Hike 2.1 12 2.1 7 2.3 15

Bike 1.2 10 .4 18 .33 5

Jeep 1.3 11 5.1 19 4.5 18

Table 8: Comparison Between Existing and Alternative Bike Routes for Experiments 4, 7 and 9

the alternative bike route reveals a dramatic decline in both hikers and jeeps, but a steady increase

in number of bikers. In fact, an evaluation of Table 8 illustrates that visual encounters with hikers

declines to one �fth of those that occurred in Figure 8, with the same number of hikers still using the

trails. This strongly suggests that by using the alternative trail, the distribution of hikers and bikers

within the canyon is more conducive to minimizing conicts.

Figures 10 illustrate a signi�cant number of encounters with jeeps from both bikers and hikers

in the canyon. As in Figures 8 & 9, encounters with other agents declined. Of signi�cance are the

encounters with hikers and jeeps. But interestingly enough, increasing the number of bikers from

eleven to twenty seven has little e�ect on the mean number of encounters that occur, but does e�ect

the maximum. In other words while the number of encounters remains the same, the encounters are

more evenly dispersed along the trail, rather than peaking at speci�c locations. From a management

perspective, if the objective is to disperse the impacts of encounters over time and reduce high impact

areas of conict, then this alternative bike route would o�er a solution to this problem.

13 Discussion

The results of this research illustrate however that the conicts most often reported are from bikers

having negative encounters with hikers. While jeeps are certainly considered to have a fairly high level

of impact on both hikers and bikers, they are not as strong a determinant of a negative recreational

experience as anticipated. Bikers and hikers continually clash in the canyons. What is of interest

however is how often and where these encounters occur. An examination of the results of the agent

simulation runs illustrates that bikers most frequently clash with other bikers. While bikers may have

more encounters with other bikers, as reported in the survey, they do not see them as detracting from

their experiences.

The agent simulations seem to be an excellent method for modeling recreator encounters and

ultimately conicts. While statistical results of the survey used in this study provide an indication

of the average number of encounters (viewed as negative detractors), the agent simulations provide

a dynamic view of these encounters and identify the spatially explicit locations where they occur.

The e�ect of these encounters on the overall recreational experience is still unknown. However, this

simulation environment provides a way to test and evaluate many scenarios of recreational use. While

the survey provided a quantitative measure of the recreational experience, the simulation environment

provides a dynamic, spatial representation of use and provides the added bene�t of collecting and

storing data on encounters over time. Both these data can be evaluated using conventional statistical
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techniques and compared to explain commonalities and di�erences.

Of interest in this research, and showing the power of using simulation, is the impact of alternative

routes on recreator encounters. An examination of the biker trail alternatives as suggested by the

respondents to the survey, illustrate the importance of a well thought out trail design on recreational

encounters. As can be seen in this research both alternative trail designs signi�cantly reduce the num-

ber of encounters with other recreators. In fact, from before the turn around point to the completion

of a biker's journey, they literally have no visual contact with any other recreator type. If hikers

do have an accumulated negative e�ect on a bikers experience then it is clear that these alternative

routes would alleviate this problem. This situation is identical when assessing encounters using the

alternative jeep trail layout. Biker and hiker encounters with jeeps virtually disappear for over �fty

percent of the journey. This is a substantial decline in encounters considering the signi�cant number

reported by the respondents. It is clear that the simulation environment can assist in evaluating

existing and proposed trails in an attempt to minimize encounters and conicts which ultimately lead

to a decline in recreational experience.

What is imperative to emphasize in this work is that simulation of any dynamic behavior cannot

be accomplished without such techniques as developed in this research. Simulation using personality

traits and behavioral rules synthesized from human recreators provide a forum to evaluate and test a

diversity of recreator use densities over time. These alternatives can be used to develop new facilities

along the trails, and to redirect trail use to maximize user satisfaction while minimizing impact.

Being capable of seeing the agents interacting under a variety of constraints can assist the manager

in acquiring a better understanding of how human recreators use and interact on public lands.

This research has taken the �rst step forward to make linkages between GIS, Multiagent systems

and Recreation Behavior Modeling. While this research has not directly dealt with goal interference

theory, it does use it as a foundation for behavior modeling. It is assumed that perceived bene�ts,

and obtaining or maintaining those bene�ts, directly correlates with the goal interference. Encounter

and/or subsequent conicts are the main cause of goal interference. The landscape recreator agent

developed in this work was programmed speci�cally to avoid interference and when threatened passed

other agents or avoided stopping at scenic lookouts. This technique allows one to reduce the amount

of goal interference, while maximizing bene�ts. More than that, it allows one to experiment with

arti�cial recreators to realistically determine thresholds of goal interference and devise management

strategies to reduce it. This is one of the advantages of using simulation and the power of such

multiagent environments.

14 Conclusions

This research advances our knowledge and understanding or natural resource assessment and intel-

ligent simulation systems in the following ways: Extends the theoretical foundation of recreation

and behavior by exploring the concept of bene�ts-based management for measuring desirable and

obtainable bene�ts of leisure and assessing spatially-explicit visual and physical encounters among

recreators in Broken Arrow Canyon; Extends the knowledge-base of the development, calibration and

use of intentional, multi-autonomous agent systems in GIS represented worlds; Develops an entirely

new form of intelligent decision support system (IDSS) to assist natural resource managers in as-

sessing and managing human use of natural areas which could be easily extended into a number of

other areas such as assessing impacts on wildlife habitats; Expands the existing capabilities of visual

operators found in GIS for providing all mobile agents with visual capabilities. This vision system is

used for controlling agent movement, goal-seeking, determining locations and distances of potentially

conicting agents and could be easily modi�ed for identifying signi�cant landscape features; Utilizes

conventional social science survey techniques with automated �eld methodologies for calibrating agent

movement; Develops a user friendly, parameterized interface for experimenting with alternative trail

layouts and a diversity of agent con�gurations under a variety of conditions.

Much work can be undertaken to improve the predictability and reliability of the modeling frame-
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work. To expand our understanding of the dynamic physiological and psychological experience pat-

terns, sampling methods could be used. Dynamic experience patterns can be empirically measured

including such factors as visual acuity, focus of attention, mood, psychological bene�ts, coping strate-

gies, norms of behavior, and physiological changes at strategic locations within a strati�ed set of

landscape settings found throughout the study site. A methodology employing these techniques that

provided a way for the visitor to stop, record and photograph landscapes of importance would provide

valuable information and lead to improved understanding of the dynamics of recreation experience.

It is important however to ensure that wherever and whenever the visitor records such information,

that their explicit location is captured as well so as to be able to link these changes to physiographic

settings.

To improve the modeling of social interactions in a physical environment it is imperative that a

more thorough understanding be acquired on how humans translate information from the environment

into meaningful actions. Human-like agent simulations are no di�erent. Once the spatial information

is communicated to an arti�cial agent it must then be translated from its objective form into the

symbolic and cognitive framework from which a�ective human responses are derived. This area of

research needs considerable attention, but will provide meaningful outcomes.
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Abstract

In this paper, we show how linguistic rules can be extracted from trained neural networks

for high-dimensional pattern classi�cation problems. In our rule extraction method, antecedent
linguistic values such as \small" and \large" are presented to a trained neural network for ex-
tracting linguistic rules. Since input values are handled as fuzzy numbers, outputs from the

trained neural network are also calculated as fuzzy numbers by fuzzy arithmetic. When linguistic
values in the antecedent part of a linguistic rule is presented to the trained neural network, the
consequent class and the certainty grade are speci�ed by the corresponding fuzzy output vector.

In this manner, all combinations of antecedent linguistic values are examined as input vectors
to the trained neural network for extracting linguistic rules. While our rule extraction method
works very well for low-dimensional pattern classi�cation problems, there exist several di�culties

in the application to high-dimensional problems. One di�culty is the exponential increase of
the number of possible combinations of antecedent linguistic values. Another di�culty is excess
fuzziness of the calculated fuzzy output vector, which prevents our rule extraction method from

appropriately specifying the consequent class and the certainty grade. From the viewpoint of
the understandability of extracted knowledge, it is also another di�culty that a large number of
linguistic rules are extracted from the trained neural network. In this paper, we show how these

di�culties can be remedied in our rule extraction method. Simulation results on a real-world pat-
tern classi�cation problem with many continuous attributes show that classi�cation knowledge
can be extracted from trained neural networks in an understandable form.

1 Introduction

The main goal of the design of classi�cation systems is to maximize the prediction ability for unseen

patterns. Thus the performance of a classi�cation system is usually measured by its classi�cation

rate on unseen patterns. When multi-layer feedforward neural networks are applied to classi�cation

problems, they are trained by numerical data for maximizing their prediction ability. In general, neural

networks are handled as black box models in the application to classi�cation problems. That is, we do

not know why a trained neural network makes a particular decision with respect to the classi�cation

of an unseen pattern. In the context of knowledge discovery and data mining, there are two goals (i.e.,

prediction and description) where description tends to be more important than prediction [1]. While

neural networks have high prediction ability, their description ability is not high. That is, connection

weights of trained neural networks do not directly show any classi�cation knowledge to users in a

human-understandable form. Many approaches [2{7] have been proposed to the rule extraction from

trained neural networks. Since the rule extraction is an extremely di�cult task for arbitrary con�gured

networks [3], usually special network architectures and/or learning algorithms were assumed in those

approaches. High-dimensionality of pattern classi�cation problems makes the rule extraction more

di�cult. In this paper, we tackle this extremely di�cult task: extracting linguistic rules from arbitrary

trained neural networks for high-dimensional pattern classi�cation problems. We do not assume any

special network architectures or learning algorithms. Linguistic rules are extracted from standard

feedforward neural networks trained for high-dimensional pattern classi�cation problems.

In our former study [8], we proposed an extraction method of linguistic rules from trained neural

networks. While it worked very well for low-dimensional pattern classi�cation problems, there exist

several di�culties in the application to high-dimensional problems. The main aim of this paper is
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to improve the applicability of our linguistic rule extraction method to high-dimensional problems.

As in our former study [8], we use linguistic rules of the following form for an n-dimensional pattern

classi�cation problem with continuous attributes:

Rule Rp : If x1 is Ap1 and : : : and xn is Apn then Class Cp with CFp; (1)

where x = (x1; x2; : : : ; xn) is an n-dimensional pattern vector, p indexes the number of rules, Rp

is the label of the p-th rule, Api's (i = 1; 2; : : : ; n) are antecedent linguistic values such as \small"

and \large", Cp is a consequent class and CFp is a certainty grade. We assume that the meaning

of each linguistic value is speci�ed by its membership function. That is, we handle linguistic values

as fuzzy numbers. In Fig.1, we show membership functions of typical linguistic values. In computer

simulations of this paper, we use the �ve linguistic values in Fig.1 and \don't care" as the antecedent

linguistic values Api's.

MS L
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Figure 1: Membership functions of typical linguistic values. (S:small, MS:medium small, M:medium,

ML:medium large, and L:large)

In our rule extraction method, we assume that a neural network has already been trained. While

we use a standard back-propagation neural network [9] for describing our rule extraction method, it

is applicable to any feedforward neural networks. In our method, an n-dimensional fuzzy vector of

linguistic values in the antecedent part of a linguistic rule is presented to the trained neural network.

The corresponding fuzzy output vector from the trained neural network is calculated by fuzzy arith-

metic. The consequent class and the certainty grade of the linguistic rule are determined based on the

fuzzy output vector. In this manner, all combinations of antecedent linguistic values are examined as

fuzzy input vectors to the trained neural network for extracting linguistic rules. When we have six

antecedent linguistic values (i.e., �ve linguistic values in Fig.1 and don't care), the total number of

possible combinations of the antecedent linguistic values is 6n where n is the number of input units

of the trained neural network.

Our rule extraction method can not be directly applied to high-dimensional problems. One di�-

culty is the exponential increase of the number of possible combinations of the antecedent linguistic

values. It is impossible to examine all the 6n combinations when n is large. Another di�culty stems

from the increase of excess fuzziness of fuzzy outputs. The fuzziness of fuzzy outputs is increased by

the feedforward calculation in the trained neural network because fuzzy arithmetic is used for the cal-

culation of the fuzzy input-output relation of each unit (see Nii & Ishibuchi [10]). The excess fuzziness

tends to increase as the size of neural networks increases. Large excess fuzziness of the fuzzy output

vector prevents our rule extraction method from appropriately specifying the consequent class and

the certainty grade of each linguistic rule. From the viewpoint of the understandability of extracted

knowledge, it is another di�culty in the application to high-dimensional problems that a large number

of linguistic rules are extracted from trained neural networks. In the context of knowledge discovery

and data mining, it is easy to generate a large number of rules, but most of the generated rules are

not useful or interesting for users [11]. In this paper, we show how these di�culties can be remedied

in our rule extraction method.
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(6), we have a crisp output vector op = (op1; : : : ; opc). In this case, xp is usually classi�ed by a single

winner output unit as follows:

If opk < oph for all k's (k = 1; 2; : : : ; c and k 6= h) then xp is Class h; (7)

where opk is the crisp output from the k-th output unit of the trained neural network.

By directly extending this decision rule to the case of the fuzzy input vector Ap = (Ap1; : : : ; Apn),

we have the following decision rule:

If Opk < Oph for all k's (k = 1; 2; : : : ; c and k 6= h) then Ap is Class h; (8)

where Opk is the fuzzy output from the k-th output unit of the trained neural network. In this decision

rule, the inequality relation Opk < Oph between the fuzzy numbers Opk and Oph should be de�ned.

First let us de�ne the inequality relation [Opk]� < [Oph]� between the �-cuts as

[Opk ]� < [Oph]� () [Opk]
U
� < [Oph]

L
� ; (9)

where [�]L� and [�]U� denote the lower limit and the upper limit of the �-cut [�]� of a fuzzy number,

respectively. From (9), we can see that the inequality relation [Opk ]� < [Oph]� holds when there is no

overlap between [Opk]� and [Oph]�. Using the inequality relation in (9) for �-cuts, the decision rule

in (8) can be rewritten for classifying the �-cut [Ap]� of the fuzzy input vector Ap as

If [Opk]� < [Oph]� for all k's (k = 1; 2; : : : ; c and k 6= h)

then [Ap]� is Class h: (10)

Using a pre-speci�ed threshold value �, we de�ne the inequality relation Opk < Oph between the

fuzzy numbers as

Opk < Oph () [Opk ]� < [Oph]� : (11)

Thus the decision rule for the fuzzy input vector Ap in (8) is rewritten as

If [Opk ]� < [Oph]� for all k's (k = 1; 2; : : : ; c and k 6= h)

then Ap is Class h: (12)

In Fig.3, we illustrate this decision rule. As shown in Fig.3(b), there are many cases where a single

winner unit can not be speci�ed by the decision rule in (12). In those cases, the classi�cation of the

fuzzy input vector Ap is rejected. This means that the linguistic rule with the antecedent linguistic

values Ap1; Ap2; : : : ; Apn is not generated because its consequent part can not be uniquely speci�ed.
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Figure 3: Illustration of the decision rule for the fuzzy input vector. In (a), the fuzzy input vector is

classi�ed as Class 3. In (b), the classi�cation of the fuzzy input vector is rejected.

When the fuzzy input vector Ap is classi�ed as a particular class by the decision rule in (12),

a linguistic rule with the antecedent linguistic values Ap1; Ap2; : : : ; Apn is generated. Its consequent
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class Cp is determined as the classi�cation result. The certainty grade CFp is speci�ed by examining

the classi�cation of the �-cut [Ap]� of the fuzzy input vector Ap for various values of �. In our

computer simulations, we used 100 values of � (i.e., �=0.01, 0.02, . . . , 1.00). We specify the certainty

grade CFp as

CFp = 1�minf� j [Ap]� is classi�able by (10), � = 0:01; 0:02; : : : ; 1:00g: (13)

In this manner, we can generate a large number of linguistic rules by examining all the possible

combinations of antecedent linguistic values. In the case of Fig.3(a), the consequent class Cp is Class

3 and the certainty grade CFp is 0.65.

3 Application to High-Dimensional Problems

While our linguistic rule extraction method worked very well for low-dimensional pattern classi�cation

problems (see Ishibuchi & Nii [8]), it can not be directly applied to high-dimensional problems. In this

section, we illustrate several di�culties in the application to high-dimensional problems using wine

data with 13 continuous attributes (available from UC Irvine database). The wine data consist of 178

samples from three classes. As a pre-processing procedure, we normalized all attribute values into real

numbers in the unit interval [0; 1] in order to use the same set of linguistic values in Fig.1 for all the

13 attributes. Thus the wine data were transformed into a three-class pattern classi�cation problem

in the 13-dimensional unit cube [0; 1]13. We trained a three-layer feedforward neural network with 13

input units, 5 hidden units and 3 output units using all the 178 samples as training data. Our task

in this section is to extract linguistic rules from the trained neural network for the wine data.

The main di�culty in the application of our linguistic rule extraction method to high-dimensional

problems is the exponential increase of the number of possible combinations of antecedent linguistic

values. For example, the total number of possible combinations of six linguistic values is over 13

billion (i.e., 613 = 1:31� 1010) for the 13-dimensional wine data. Since it is impractical to examine

such a large number of combinations as fuzzy input vectors to the trained neural network, we have to

restrict the number of examined fuzzy input vectors within a tractable magnitude.

A simple but promising idea for restricting the number of possible combinations of antecedent

linguistic values is to try to extract only general linguistic rules with a small number of antecedent

conditions. Let us de�ne the length of a linguistic rule by the number of its antecedent conditions

excluding \don't care" attributes. For example, the length of the following linguistic rule is two:

If x1 is small and x2 is don't care and x3 is don't care

and x4 is large then Class 3 with CFp = 0:95: (14)

This linguistic rule can be rewritten as \If x1 is small and x4 is large then Class 3 with CFp = 0:95"

by omitting the \don't care" attributes. In Table 1, we show the number of possible combinations of

antecedent linguistic values for each rule length in the case of the 13-dimensional wine data. From

this table, we can see that the number of general rules (i.e., short rules) is much smaller than that

of speci�c rules (i.e., long rules). Since general rules are more understandable for users than speci�c

rules, the extraction of only general rules has another advantage: high understandability of extracted

knowledge.

Rule length 1 2 3 4 5 10

Combinations 65 1,950 35,750 446,875 4,021,875 2,792,968,750

Table 1: The number of possible combinations of antecedent linguistic values for each rule length in

the case of the 13-dimensional wine data.

We tried to extract linguistic rules of the length three or less from the trained neural network. That

is, we examined 37765 fuzzy input vectors of antecedent linguistic values (37765 = 65+1950+35750;
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see Table 1). In our linguistic rule extraction method, we speci�ed the threshold value � as � = 0:01.

While we tried to extract linguistic rules by presenting each of those 37765 fuzzy input vectors to

the trained neural network, we could not extract any linguistic rule. This is because fuzzy output

vectors from the trained neural network involved large fuzziness. For example, when we tried to

extract a linguistic rule of the length two with the antecedent condition \If x1 is small and x13 is

medium small", we presented the following fuzzy vector to the trained neural network:

Ap = (S, DC, DC, DC, DC, DC, DC, DC, DC, DC, DC, DC, MS); (15)

where \S", \DC" and \MS" denote \small", \don't care" and \mediumsmall", respectively. Since all

attribute values were normalized into real numbers in the unit interval [0; 1], \don't care" was handled

as the unit interval [0; 1]. In Fig.4, we show the fuzzy output vector from the trained neural network

corresponding to the fuzzy input vector Ap in (15). As we can see from Fig.4, each fuzzy output has

large fuzziness (i.e., the fuzzy outputs fully overlap one another). Such a large overlap prevents our

rule extraction method from specifying the consequent class and the certainty grade.
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Figure 4: Fuzzy outputs from the trained neural network calculated by fuzzy arithmetic.

When fuzzy arithmetic is used for calculating the fuzzy input-output relation of each unit, the

fuzziness of fuzzy outputs increases by the feedforward calculation in neural networks. Usually the

fuzzy-arithmetic-based calculation of fuzzy outputs involves large excess fuzziness (see Nii & Ishibuchi

[10]). Such excess fuzziness degrades the performance of our linguistic rule generation method. Since

the numerical calculation of fuzzy outputs is performed based on interval arithmetic on �-cuts of fuzzy

inputs, we may decrease the excess fuzziness by improving the accuracy of interval arithmetic. In Nii

& Ishibuchi [10], we used a straightforward subdivision method [16] for decreasing the excess fuzziness

of fuzzy outputs from neural networks. This method is illustrated in Fig.5(a). In this method, each

element of an n-dimensional interval vector (i.e., �-cut of an n-dimensional fuzzy vector) is subdivided

into multiple subintervals (say, L intervals). This means that the interval vector is subdivided into

Ln interval vectors. Here we encounter the curse of dimensionality, again. Since the straightforward

subdivision method can not be applied to high-dimensional problems, we use a hierarchical subdivision

method illustrated in Fig.5(b). In this method, only a single element of an interval vector is subdivided

into two subintervals at a time.

00
A1 A1

A2 A2

x1

x2x2

x1
hh

h hh-level set of A h-level set of A

(a) (b)

Figure 5: Illustration of subdivision methods: (a) simple subdivision, and (b) hierarchical subdivision.
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Using the hierarchical subdivision method, we calculated the fuzzy output vector from the trained

neural network corresponding to the fuzzy input vector in (15). In Fig.6, we show the shape of each

fuzzy output. In this case, we can generate the following linguistic rule:

If x1 is small and x13 is medium small then Class 2 with CFp = 0:81: (16)

In this manner, we examined all the 37765 fuzzy input vectors for generating linguistic rules of the

length three or less from the trained neural network. The number of extracted linguistic rules of each

length is summarized in Table 2. We can see from Table 2 that a large number of linguistic rules were

extracted.
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Figure 6: Fuzzy outputs from the trained neural network calculated by a hierarchical subdivision

method.

Rule length 1 2 3

Combinations 0 188 7193

Table 2: The number of extracted linguistic rules of each length.

It is very di�cult for users to manually examine all the extracted 7381 rules (7381 = 188+7193; see

Table 2). Moreover those extracted rules did not have high classi�cation ability. When we classi�ed

all the 178 samples in the wine data by the extracted 7381 rules, we had a 80.9% classi�cation rate.

We can use genetic-algorithm-based rule selection methods [17-20] for selecting only a small number

of signi�cant rules from a large number of extracted rules. For example, a genetic algorithm selected

17 linguistic rules that have a 100% classi�cation rate.

4 Conclusion

In this paper, we showed three di�culties in the application of our rule extraction method [8] to

high-dimensional pattern classi�cation problems. Those di�culties are (i) the exponential increase

of possible combinations of antecedent linguistic values, (ii) the increase of excess fuzziness of fuzzy

outputs by the feedforward calculation in neural networks, and (iii) a large number of extracted

linguistic rules. We bypassed the �rst di�culty by extracting only general linguistic rules with a

small number of antecedent conditions. That is, we did not try to extract speci�c linguistic rules

with many antecedent conditions. The second di�culty was remedied by improving the accuracy of

interval arithmetic on �-cuts of fuzzy input vectors. The third di�culty was resolved by selecting

only a small number of signi�cant linguistic rules by genetic algorithms.

As shown in this paper, our approach can �nd a small number of general linguistic rules from

trained neural networks without assuming any speci�c network architectures or learning algorithms.

High understandability of extracted knowledge and high applicability are two characteristic features

of our approach.



Hisao Ishibuchi, Manabu Nii and Kimiko Tanaka 217

Acknowledgement

This research was partially supported by Yazaki Memorial Foundation for Science and Technology.

References

[1] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. \Knowledge discovery and data mining: To-

wards a unifying framework", 1996Proc. of 2nd International Conference on Knowledge Discovery

& Data Mining, 82{88.

[2] Fu, L. \Rule generation from neural networks", 1994 IEEE Trans. on Systems, Man, and Cyber-

netics, 24, 1114{1124.

[3] Sestito, S. and Dillon, T. \Knowledge acquisition of conjunctive rules using multilayered neural

networks", 1993 International Journal of Intelligent Systems, 8, 799{805.

[4] Towell G. and Shavlik, J. W. \Extracting re�ned rules from knowledge-based neural networks",

1993 Machine Learning, 13, 71{101.

[5] Andrews, R., Diederich, J., and Tickele, A. B. \Survey and critique of techniques for extracting

rules from trained arti�cial neural networks", 1995 Knowledge-Based Systems, 8, 373{389.

[6] Hayashi, Y. \A neural expert system with automated extraction of fuzzy if-then rules and its

application to medical diagnosis", In Lippmann, R. P., Moody J. E., and Touretzky, D. S. (eds.),

1991 Advances in Neural Information Processing Systems 3. Morgan Kaufmann, San Mateo,

USA, 578-584.

[7] Matthews, C. and Jagielska, I. \Fuzzy rule extraction from a trained multilayered neural net-

work", 1995 Proc. of IEEE International Conference on Neural Networks, 744{748.

[8] Ishibuchi, H. and Nii, M. \Generating fuzzy if-then rules from trained neural networks: Linguistic

analysis of neural network", 1996 Proc. of IEEE International Conference on Neural Networks,

1133{1138.

[9] Rumelhart, D. E., McClelland, J. L., and the PDP Research Group. 1986 Parallel Distributed

Processing, MIT Press, Cambridge.

[10] Nii, M. and Ishibuchi, H. \Fuzzy arithmetic in neural networks for linguistic rule extraction",

1998 Proc. of 2nd International Conference on Knowledge-Based Intelligent Electronic Systems,

2, 387-394.

[11] Liu, B., Hsu, W., and Chen, S. \Using general impressions to analyze discovered classi�cation

rules", 1997 Proc. of 3rd International Conference on Knowledge Discovery & Data Mining,

31{36.

[12] Ishibuchi, H., Fujioka, R., and Tanaka, H. \Neural networks that learn from fuzzy if-then rules",

1993 IEEE Transactions on Fuzzy Systems, 1, 85{97.

[13] Buckley, J. J. and Hayashi, Y. \Fuzzy neural networks: A survey", 1994 Fuzzy Sets and Systems,

66, 1{13.

[14] Ishibuchi, H., Morioka, K., and Turksen, I. B. \Learning by fuzzi�ed neural networks", 1995

International Journal of Approximate Reasoning, 13, 327{358.

[15] Kaufmann, A. and Gupta, M. M. 1985 Introduction to Fuzzy Arithmetic, Van Nostrand Reinhold,

New York.



218 Linguistic rule extraction from neural networks for high-dimensional classi�cation problems

[16] Moore, R. E. 1979 Methods and Applications of Interval Analysis, SIAM Studies in Applied

Mathematics. Philadelphia.

[17] Ishibuchi, H., Nii, M., and Murata, T. \Linguistic rule extraction from neural networks and

genetic-algorithm-based rule selection", 1997 Proc. of IEEE International Conference on Neural

Networks, 2390{2395.

[18] Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H. \Selecting fuzzy if-then rules for

classi�cation problems using genetic algorithms", 1995 IEEE Trans. on Fuzzy Systems, 3, 260{

270.

[19] Ishibuchi, H., Nozaki, K., Yamamoto, N., and Tanaka, H. \Construction of fuzzy classi�cation

systems with rectangular fuzzy rules using genetic algorithms", 1994 Fuzzy Sets and Systems, 65,

237{253.

[20] Ishibuchi, H., Murata, T., and Turksen, I. B. \Single-objective and two-objective genetic al-

gorithms for selecting linguistic rules for pattern classi�cation problems", 1997 Fuzzy Sets and

Systems, 89, 135{150.



Ashley Tews and Raymond Lister 219

Self-Organisation in a Simple Pursuit Game

Ashley Tews

School of Computing Science and

Electrical Engineering,

University of Queensland

Tel: +61-7-3365-3985

Fax: +61-7-3365-4999

tews@elec.uq.edu.au

Raymond Lister

School of Computing and

Information Technology

University of Western Sydney, Nepean,

PO Box 10 Kingswood NSW 2747 Australia

Tel: +61-47-360-610 Fax: +61-47-360-662

r.lister@uws.edu.au

Abstract

This paper concerns dynamic team formation in multi-agent systems, where each agent de-
termines its own action by observing the other agents. The test bed is a simple pursuit game.
Identical mobile agents learn to form teams to most e�ectively catch individual stationary targets.

The decision-making component is not manually encoded, but instead it self-learns, without an
external teacher, by the method of temporal di�erences. Agents do not negotiate, nor do they
explicitly form or communicate commitments. Instead, agents determine their own actions by

a behaviourist approach: they reason only from the relative positions of other agents, not from
an interpretation of the intent of those other agents. Experimental results demonstrate that the
agents do coordinate their activities, by forming teams. In this paper, self-organisation is man-

ifested in three forms: the formation of teams by the pursuer agents, the temporal di�erence
algorithm by which agents learn to cooperate, and in the representation of the learnt knowledge
as the weights in a perceptron.

1 Introduction

Games have become a common type of micro-world for the study of cooperation in multi-agent systems.

One popular type is the pursuit game, where agents work in teams to catch targets. Such a pursuit

game was developed by Grinton, Sonenberg, and Sterling[1]. They described a system in which

identical mobile pursuer agents cooperated to catch individual stationary targets. That test bed

provided a discrete event simulation in a simple grid-based world of hexagonal cells that wrapped

around at the edges. Each cell either contained one agent, or was empty. Pursuer agents caught

targets by surrounding the target. Targets appeared at random in the world. They disappeared when

they were either captured (or \killed") or when they expired at a random age. Pursuer agents did not

seek to maximise the number of kills to which they directly contributed. Instead, the agents worked

together in an e�ort to maximise the score gained by the group of pursuers as a whole. To coordinate

the actions of the agents, Grinton et al. used Jennings'[2] elaborate framework of commitments and

conventions. Individual pursuers communicated explicit commitment proposals to all other pursuers.

In all experiments performed by Grinton et al., the behaviour of the pursuers was handcrafted. There

was not a learning component to the system.

Tan[5] demonstrated that agents in a related problem domain can learn to cooperate via a rein-

forcement learning algorithm. Sen, Sekaran, and Hale[3] demonstrated that agents can not only learn

to cooperate via such a reinforcement learning algorithm, but they can do so without communicating

intentions and commitments, and indeed without even being aware of each other. We refer to this as

a behaviourist approach. This may at �rst seem an unlikely formula for emergent cooperation, but

in some respects it is well suited to cooperation. Speci�cally, without commitments there can be no

\lies" (ie. broken commitments). The behaviour of any agent is determined only by what is known

with certainty.

However, both Tan and Sen et al. used the Q-learning algorithm [8] for reinforcement learning.

This algorithm has inherent scaling problems, because it represents the system state as a vector of
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integers. It follows that the algorithm is not always well suited to systems with many state variables,

as the number of states rises exponentially with the number of state variables, and so it may be

di�cult for a learning system to generalise from searching a small portion of possible states. Tan

restricted his work to problems with the order of a few hundred states. Sen et al. noted that their

systems converged on sub-optimal solutions, and they attributed this to an incomplete exploration of

the state space

In this paper, we present the results for a pursuit game where the agents are trained by the

Temporal Di�erence reinforcement algorithm [4], and resource requirements increase polynomially

with problem size, while maintaining good generalisation, because the decision making component of

the system is a single-layer perceptron.

2 Details of the Simpli�ed Test Bed

Our test bed was modelled on that of Grinton et al., with the following minor di�erences, which were

made as implementation expediencies, that have no bearing on our primary interest, the formation

of teams. The cells in our world are square, not hexagonal, and form a 10 by 10 grid without wrap

around. Pursuer agents may occupy the same square, and they capture a target by occupying its

square in su�cient numbers, rather than by surrounding the target cell. There are always a �xed

number of targets on the board (a target set). The user determines the number of targets at system

initialisation. In any given simulation run, all targets have an equal �xed lifetime, which is determined

by the user. If, at the end of a target set's lifetime, three or more pursuers occupy one of the target

squares, then that target is deemed to have been \killed" or \captured". Alternately, if a target square

is occupied by less than three pursuers, then that target is deemed to have \expired". The instant

that one target set disappears from the board, another target set appears immediately, with each

target at a random location. As in the work of Sen et al., we use a behaviourist approach. At each

time interval, one pursuer re-evaluates the target towards which it will take a step (of one square),

without reference to either its own history of moves, or the history of any other pursuer. The decision

of that pursuer is based only upon the distances at that time interval of every pursuer to all targets.

3 The Method of Temporal Di�erences

3.1 Background

There is a fundamental problem that must be addressed by any game-playing system that self-learns:

the only certain measure of performance is the �nal result of the game. Given that, how can a learning

algorithm decide which moves were good and which were bad? In some circumstances, a certain move

may have been good, but an earlier bad move had rendered the game unwinnable: how is the system

to avoid penalising such \innocent" moves? Even if the system could correctly identify the bad moves,

there is no external instruction as to the move it should have made. This credit assignment problem is

not unique to game playing systems. In fact, most related work has been done with control problems

in mind, where the archetypal problem is the balancing of a hinged pole on a horizontally translatable

cart: how is the system to decide which movements of the cart were good and which movements

caused the pole to fall?

One common approach is to build a learning system that contains two sub-systems: a controller

and a predictor. At each temporal interval, the controller calculates its possible actions (eg. left/right

cart movements of various strengths) and selects the action that the predictor estimates is most likely

to lead to the desired outcome. Initially, the predictions are little more than random numbers, but

the predictor learns to improve its performance by attempting to minimise the di�erence in successive

predictions. If the prediction at time t is Pt, where 0 < Pt < 1, then the error for that time interval is

a function of the di�erence between successive predictions (ie. Pt+1 � Pt). The actual �nal outcome
has either Pt = 0 or Pt = 1, which may for example be interpreted as \player loses" or \player wins"
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respectively. The training system seeks to minimise the sum, over all time intervals, of the di�erence

between successive predictions. Sutton [4] formalised this Method of Temporal Di�erences. In our

experiments reported below, we used Sutton's TD(0) form of the algorithm.

Tesauro [6] trained a Multilayer Perceptron to play Backgammon, using the method of temporal

di�erences (TD). His most advanced systems are estimated to play at the level of a strong international

master, after 1.5 million games of self-play [7].

In single agent environments, like Tesauro's Backgammon player, the program maintains a queue

of scenarios, one scenario for each point in the game. A scenario consists of the game con�guration

at that time (eg. the position of pieces on a Backgammon board) and the Pt estimate given by

the predictor for that con�guration. When the game is completed, and the outcome is known, the

di�erence in each pair of consecutive Pt values, and the related board con�guration, are used to

increment the training of the predictor.

3.2 TD in a Multi-Agent Domain

The application of TD to our simple pursuit game is complicated by the existence of multiple agents.

In most work on TD learning, there is only a single agent. In our multi-agent game, an individual

pursuer may elect to leave a particular target for other pursuers, and move toward another target

instead. Unlike single agent domains, where the outcome of the game depends upon the actions of

that agent alone, the determination of whether it was correct for a particular pursuer to leave a target

depends upon the subsequent actions of other pursuers.

Our solution to the above problem is summarised in Figure 1. We maintain, for each pursuer,

T queues of Pt values, where T equals the number of targets. The queue for each target contains

successive predictions for the outcome if the pursuer was, at time t, to take a step toward that target,

irrespective of which target the pursuer actually steps toward. The various Pt values are stored upon

their respective target queues, as part of a scenario. Each scenario stored on these queues consists

of 1) a Pt value and 2) the board con�guration that gave rise to that Pt value, as de�ned by the

Manhattan distance of each pursuer to that target.

When given the opportunity to move, a pursuer always takes a step toward one of the T targets.

The choice of which target to move toward is made as follows. The pursuer makes T requests to the

predictor, one for each possible move. The pursuer then steps toward the target with the highest Pt
value.

Table 1 gives the �nal Pt value when there are less than six pursuers and two or more targets.

It is the relative values between each Pt pair in each table row that is of primary concern, rather

than the absolute value of any single Pt value, since a pursuer moves towards the target with the

larger Pt value. Case 1 of Table 1 gives the values for all pursuers when a target was killed. Without

loss of generality, let that be target X. With less than six pursuers, only one target can be killed,

and at least three of the pursuers have correctly moved to the same target. Such behaviour is to be

reinforced. Thus all pursuers have a �nal X queue outcome of one, and an Y queue outcome of zero.

Case 2 describes what should happen when insu�cient pursuers move to the same target. Since it is

impossible to decide in general which pursuers have behaved incorrectly, no training is possible, hence

the dashes in this row of the table.

Table 2 gives the �nal Pt value when there are six or more pursuers and exactly two targets. Under

such circumstances, the pursuers must break up into two teams. As with the previous table, it is the

relative Pt values in each row of this table that are of primary concern, since a pursuer moves towards

the target with the larger predictive value. Cases 1 to 3 of Table 2 give the values for when both

targets were killed. Such collective behaviour is to be reinforced. Thus each pursuer that was on a

target (ie. cases 1 and 2) is further encouraged to repeat its behaviour in future. The dashes in case

3 indicate that training is not done with any pursuer that proved surplus to requirements. In case 4,

insu�cient pursuers moved to one of the targets, target Y. Consequently, all pursuers are encouraged

to move toward target Y under such circumstances in the future; even those pursuers that participated

in killing target X.
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Initialise the predictor.
REPEAT

Place T targets on the board, each at random locations.
Place the requested number of pursuers on the board, in random locations.
Initialise as empty the T queues of each pursuer.

REPEAT
FOR each pursuer

DO
FOR each target
DO

Make a tentative move toward that target, get a Pt value from the predictor for that
board con�guration, add this scenario to the queue for this pursuer/target, and then
retract the move.

END

Move the pursuer toward the target that gave the highest Pt
END

UNTIL the lifetime of this set of targets is over

FOR each pursuer

DO
Add to the T queues

1. the �nal Pt as given by Table 1 or 2, and

2. the �nal board con�guration.

For the T queues, separately, update the predictor's weights, if that is appropriate,

using Sutton's TD(0) algorithm.
END

UNTIL the requested number of iterations is reached.

Figure 1: The learning algorithm

Case Final Outcome Pt for Pt for

No. X queue other queues

1. Target X killed, other targets expired 1.0 0.0

2. All targets expired | |

Table 1: The �nal Pt value for target queues when there are less than six pursuers

Case Final Outcome Pt for Pt for

No. X queue Y queue

1. Both targets killed, and pursuer on target X 1.0 0.0

2. Both targets killed, and pursuer on target Y 0.0 1.0

3. Both targets killed, and pursuer not on target | |

4. Target X killed, target Y expired, all pursuers 0.0 1.0

5. Both targets expired, all pursuers | |

Table 2: The �nal Pt value when there are six or more pursuers and two targets
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4 The Neural Network Predictor

The predictor is a single-layer Perceptron (i.e. no hidden units). The single output unit is a [0,1]

sigmoid which is interpreted directly as a prediction Pt. Unlike most networks, our output unit does

not have a bias (as preliminary analysis and experiments indicated that a bias is redundant in this

particular problem). There are as many input units as there are pursuers. All input units represent

the [0,1] normalized Manhattan distance from a pursuer to the target in question. The �rst input

unit is the distance of the pursuer about to move, the focal pursuer. The remaining input units are

mapped at random to the remaining non-focal pursuers.

The random mapping to input units of the non-focal pursuers illustrates a subtlety of the method of

temporal di�erences, that may account for unpublished anecdotes of the failure of TD implementations.

When using TD, the implementor must always bear in mind that the predictor will merely learn some

regularity in the environment, and not necessarily the regularity of interest to the implementor. In

our early work, we mapped non-focal pursuers to input units in a deterministic fashion. Numbers

designate all pursuers and all input units. The non-focal pursuers were assigned, in ascending order,

to input units in ascending order. Thus, pursuer 1 was on the same input unit in all but the single

case when it is the focal unit. Pursuer 2 was on the same input unit in all but two cases, when either

it or pursuer 1 was the focal unit, and so on. Because of that deterministic mapping, when there

were more than 3 pursuers, the system never the less contrived to form a team out of pursuers 1{3,

irrespective of their placement on the board.

5 Results for a Greedy Benchmark

To best assess the performance of a cooperative algorithm, a non-cooperative benchmark is required,

to establish a lower bound on the performance expected of the cooperative algorithm. An obvious

candidate is a greedy algorithm, where each pursuer moves toward its closest target, irrespective of the

positions of the other pursuers. Figure 2 summarises the performance of that algorithm, with di�ering

numbers of pursuers, from 3 to 7, but exactly two targets. For each target life and each number of

pursuers, 500 target pairs were sequentially placed at random on the board. The percentage of targets

killed was then plotted. The lines join together the points for equal numbers of pursuers. The small

box to the right of the Figure gives a legend that describes which line corresponds to a certain number

of pursuers.

With �ve or less pursuers, optimal performance for any algorithm is 50%, since only one of the

two targets can be killed. The greedy algorithm achieves optimality when there are �ve pursuers, as

at least three of any �ve pursuers must have a common nearest target. For fewer than �ve pursuers,

however, performance is signi�cantly lower than optimal. The greedy algorithm performs under 40%

with four agents, and under 20% with three agents.

With six or seven pursuers, optimal performance is 100%. The greedy algorithm only achieves a

performance of around 60% with six agents, and around 70% with seven agents.

6 Results for the TD-Perceptron

Each training run of the neural network consisted of one thousand iterations of the outer loop in

Figure 1.

6.1 Runs with three or more pursuers and two targets

We found that learning was quite fast: the system began making good decisions within the �rst ten

iterations. Figure 3 describes the performance of the system over many training runs, with two targets.

Each data point represents a single training run.
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Figure 2: The performance of a greedy algorithm

with two targets, and varying numbers of pur-

suers

Figure 3: The performance of the TD-Perceptron

system, for two targets and varying numbers of

pursuers

With �ve or fewer pursuers, and unlike the greedy benchmark, the neural network achieves optimal

performance, thus demonstrating that the pursuers are behaving in a cooperative fashion.

With six or seven pursuers, the neural network approach does not perform optimally, but it does

perform signi�cantly better than the greedy algorithm. Whereas the greedy algorithm only achieves

a performance of around 60% and 70% with six and seven agents respectively, the learning algorithm

achieves 80% and 90% respectively, thus demonstrating once again that the pursuers are behaving in

a cooperative fashion.

We performed experiments with multi-layer network topologies, with up to sixteen hidden units

in a single layer. None of these alternative networks performed better than the single-layer networks.

6.2 Runs with three pursuers and more than two targets

We found that learning was slower than in the previous case, typically taking a large percentage of

the one thousand training iterations. Figure 4 describes the performance of the system over many

training runs, for systems with between two and ten targets.

Since performance is recorded as a percentage of targets killed, optimal performance is 50% for

two targets, 33% for three targets, and so forth, down to 10% for 10 targets. Given su�cient target

life, all training runs converged to exhibit such optimal performance.

We have attempted experiments with six or more pursuers and more than two targets. In such

runs, pursuers must not only form teams but then also select a target for each team. Preliminary

results suggest that this extended problem is not-linearly separable, and thus beyond the capacities

of a single-layer perceptron.

7 Analysis of a Trained Network

The neural network predictor is used to assess the priority of moving a given pursuer toward a given

target. The higher the output value, the more likely that the pursuer will be moved toward that

target. All input units represent the [0,1] normalized Manhattan distance of a pursuer to that target.

Consequently, input values vary from zero, when the pursuer is on the target, to one. The �rst input

unit is the distance of the pursuer in question (i.e. the pursuer about to move). The remaining input

units are mapped at random to the remaining pursuers.

We examined the weights from a network trained in a six-pursuer two-target simulation run. Since

the network is a single-layer Perceptron, all connections are from an input unit to the output unit.
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Figure 4: The performance of TD-Perceptron for 3 agents and 2 to 10 targets. All runs exhibit optimal

performance, given su�cient target life.

When all these weights were rounded to two signi�cant �gures, an obvious pattern is revealed. The

weight from the �rst input unit to the output unit was �4:5, while all the other weights were 1.0.
Consider the weight from the �rst input unit. It is a large negative weight, so the further the

nominated pursuer is from the nominated target, the larger the input value, hence the less likely it is

that the pursuer will move toward that target.

The remaining input weights are identical (to two signi�cant �gures), so they have the same e�ect.

They are positive, so the further the remaining pursuers are from the nominated target, the larger the

input values, hence the more likely it is that the pursuer in question will move toward that target.

8 Conclusion

We have described a learning algorithm for a multi-agent system, tested it on a pursuit game, and

demonstrated that the agents learn to cooperate. The cooperation manifests itself as dynamic team

formation. It is perhaps surprising that such a simple system could learn to manifest dynamic team

formation. There is no communication of commitments between agents, indeed there is no concept

of commitment in the system, and the learning component of the system is merely a single-layer

Perceptron. Cooperation is not programmed explicitly into the system, but emerges from the learning

process.

We suspect there is scope for extending our basic multi-agent temporal di�erence learning algo-

rithm to incorporate non-behaviourist concepts. For example, system performance may improve if the

inputs to the neural network were doubled, to include an indication of the likelihood of each pursuer

electing to move, at its next opportunity, toward the target in question. Such an indication would

be a function of the most recent Pt value on that target queue for that pursuer. Such an indication

might be interpreted as a measure of commitment.
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A Model of Short- and Long Term Stock Market Behaviour

Abstract

Real-world stock markets are volatile and expresses such traits as overvaluation, psychological

moods, cycles and crashes. This paper develops and explores a fairly simple model which expresses
these traits. The model is continuous and non-linear. It is developed in stages. In the initial stages
it applies to the price dynamics of one type of stock only. Later on it is applied to a weighted

price index of di�erent stocks, to try to capture the dynamics of a stock exchange as a whole. The
model is not based on micro individual agents, but on the market as a whole displaying composite
behavior that is argued to be the aggregate result of individual agent behaviour. The idea is to

make some behavioural assumptions, and then adjust parameters and explore whether realistic
qualititative traits of stock market dynamics show up. From this follows that the model can make
no claims whatsoever to predict when and how much a given stock market will rise or fall. Its

purpose is instead to gain qualitative insights into the mechanisms of stock market behaviour.

1 Introduction

This paper is a systems engineer's attempt to understand and construct a model of stock market

dynamics. The model is generic, i.e. it is not an attempt to model or predict the behaviour of a

speci�c stock exchange. The main assumptions behind the paper are as follows:

It is considered a fact of life that a signi�cant share of stock market behaviour consists of follow-

ing the herd, \noise trading", \trend chasing", \technical trading" etc. Thus we do not engage in

the discussion of \how can such stock market agents prevail, won't they be weeded out since they

are non-rational?", as for instance in DeLong et al. [1]. Instead we hold that non-rationality is a

an observable trait of real-world stock markets. This is in the tradition of J. M. Keynes [2], who

states: \. . . all sorts of considerations enter into the market valuation which are in no way relevant

to the prospective yield" (p.152), ". . . It might have been supposed that competition between expert

professionals. . . would correct the vagaries of the ignorant individual. . . However, . . . these persons are,

in fact, largely concerned, not with making superior long-term forecasts of the probable yield of an

investment over its whole life, but with foreseeing changes in the conventional basis of valuation a

short time ahead of the general public. . . For it is not sensible to pay 25 for an investment of which

you believe the prospective yield to justify a value of 30, if you also believe that the market will value

it at 20 three months hence." (pp.154{55), \. . . The social object of skilled investment should be to

defeat the dark forces of time and ignorance which envelop our future. The actual, private object of

most skilled investment today is to beat the gun, as the Americans so well express it, to outwit the

crowd, and to pass the bad, or depreciating, half-crown to the other fellow." (p. 155).

We also assume that there exist \fundamentals", or an \anchor" stock price corresponding to a

sustainable yield|a yield that is also \reasonable", compared to alternative �nancial instruments like

bonds. Furthermore, it is assumed that the aggregate of agents have some sort of feeling for what

these fundamentals are (at least when stock prices are far away from them), and that this is crucial for

long-range stock market dynamics. This is at odds with Davidson [3], who holds that any stock price

is just as likely to prevail as another, based on the view that the future is completely unpredictable

at any instant in time.

The model is of the top-down category, thus not based on a population of \micro" individual

agents in the arti�cial life tradition. It is of a continuous non-linear di�erential equation type, of
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the market as a whole, displaying composite behaviour that is argued to be the aggregate result of

individual agent behaviour.

This paper is quite di�erent from that of for instance W. Brian Arthur et al. [4], both in its

top-down paradigm, and in important behavioural assumptions. Arthur et al. conclude that small

bubbles and crashes will occur (how often is not clear since they in their paper do not put any scale

on the time axis) because agents occasionally, because of willingness to experiment, will lock onto

each other in bubble-like excursions away from a \correct" price that would otherwise follow from a

pure rational expectations scenario. Related to Arthur et. al. is a paper of Brock and Hommes [5],

who argue that price volatility is due to agents choosing \cheap" but destabilizing trading strategies

near the correct price, but more expensive, better and stabilizing (thus moving the price towards the

correct level) strategies when prices are obviously o� the mark. Common for both papers is the view

that dynamics and volatility can be explained solely through endogenous mechanisms and a basically

\rational" type of agent behaviour. This paper, as stated above, assumes that agents have signi�cant

irrational behaviour traits, and furthermore that dynamics are also a consequence of exogenous inputs

in the form of events and mood changes.

The large di�erences in approaches to stock market modeling are understandable. Agent behaviour

in a stock market is extremely complicated and heterogeneous. Any such model must because of

necessary and strong simpli�cation be fairly speculative. Therefore several angles of attack on this

problem should be explored, and this paper is one such attempt.

The dynamics of the market are considered to be driven by three main demand components: One

due to the market's valuation of the �rm's real-economic prospects (the \anchor" value of the stock,

see above), another due to short-term herd mentality (over minutes and hours),and a third due to

long-term public mood shifts (over several years).

The model's dynamics stem mainly from these internal feedback loops, but the market is also

assumed to be driven by a sequence of exogenous stochastic \event pulses". This pulse process

accounts for both changes in macroeconomic conditions (for instance a change in interest rates), fresh

information about di�erent �rms (news about quarterly earnings and similar), and individual agents

taking action for some exogenous reason (as opposed to \bandwagon"| or other endogenously based

decisions).

The model will be developed in four stages:

� A model of a rational market (with perfect information) | for one category of stock.

� A market with imperfect information and bandwagon e�ects | one category of stock.

� A market with imperfect information, bandwagon e�ects and long-term optimistic or pessimistic

moods | for a stock exchange index.

� A market with imperfect information, bandwagon e�ects, long-term optimistic or pessimistic

moods, and panics | for a stock exchange index.

The presentation is based more on block diagrams than (equivalent) (di�erential) equations. This

choice follows from a conviction that insights into feedback e�ects and dynamics come much easier

this way.

2 The \rational" market

Consider the block diagram in �gure 1.

The symbols in the diagram are de�ned as follows (denomination is shown in brackets, empty

brackets means that the corresponding entity is dimensionless):

pr = Real or sustainable value of the stock [ ], expressed by the price/earnings ratio it can yield

in the long run. At pr the stock is neither over- or undervalued. For convenience we will use the term

\price" or \value" in the following, even if we are talking about the p=e ratio.
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Figure 1: A \rational" market
Figure 2: exponential response|\rational mar-

ket"

p = current market price (i.e. p=e ratio) of stock [ ].

_p=p = per cent change in price per day [% / day]. The dot implies di�erentiation.

s = di�erentiation operator [day�1].

n = net current demand for stock [number of units]. This demand may be negative, i.e. when

there is a net surplus of stocks o�ered.

c1 = constant factor [% / (number of units�day)] transforming net demand into price increase rate.
The total number of stocks issued is incorporated in this factor. There is, as indicated in the �gure,

saturation in price decrease rate, since the surplus o�ered cannot exceed the total number of stocks

issued. In the model, this is translated into a maximum rate of price decrease.

c2 = constant factor [number of units / %] transforming relative price deviation into corresponding

net demand. The total number of stocks issued is incorporated also in this factor.

The model in �gure 1 is a simple �rst order non-linear di�erential equation,

_p

p
= c1n = c1c2

�
pr � p
p

�
(1)

which holds above the negative saturation limit for _p=p. If we consider only the dynamics from pr to

p, the system is linear within saturation limits. But we stick to the non-linear formulation since we

need to access surplus demand n at later stages.

A rational market implies that all agents have the same perfect information about pr. Any change

in pr is responded to by each agent in the same manner. However, action is here assumed to be

dispersed in time. At this stage we assume that agents receive perfect information, but they do not

receive it simultaneously, or act instantaneously after receiving it. It follows from (1) that the time

span needed for price adjustment is inversely proportional to the factors c1 and c2. If we now consider

the case of a stepwise increase in pr, for instance because a technological breakthrough has occurred in

the �rm, then the resulting price adjustment path is a �rst order stable exponential step response as

shown in �gure 2. We have no overshoot, no oscillations, no unpredictable excursions, just a smooth

and asymptotically perfect price adjustment. This is of course a completely unrealistic representation

of what occurs in the real world. At the same time, it should be noted that this is the way a stock

market ought to work, reecting real-economic changes impacting the listed �rms, and nothing else.

3 A market with imperfect information and bandwagon ef-

fects

At this stage we introduce two new phenomena. The �rst is that individual agents act upon imperfect

and di�ering information. Depending upon whether he or she overvalues or undervalues the stock,

the agent will demand too much or to little, compared to what demand would have been, based on

a correct valuation. We assume that the distribution of erroneous information over all agents | also

when accounting for agents' di�erent inuence in the market | is such that the mean of aggregate

erroneous demand is zero, and that the demand error follows a normal distribution around this zero

mean. We also assume that individual agents' errors in demand change with time. The choice is then
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Figure 3: A market with bandwagon e�ects

to model aggregate demand error as a zero-mean normally distributed stochastic process (more on

what sort of process later on).

The second phenomenon is the \bandwagon" e�ect. We explain this by referring to a block diagram

of a stage 2 model, shown in �gure 3:

Surplus aggregate demand is now assumed to consist of three components,

n = nr + nb + ne (2)

We have

nr = Demand component due to agents being informed about the sustainable value of the stock.

nb = Component due to agents watching price increase/decrease rate and doing \technical trading"

based on this. The sustainable value of the stock has no direct inuence on this component. Subscript

b signi�es \bandwagon".

ne = Component due to agents having di�erent and erroneous information about the sustainable

value of the stock. This is the zero mean stochastic process discussed above. Subscript e signi�es

\error".

Furthermore, we have introduced a transfer function hb(s) in �gure 3. This function decides the

speculative component of market behaviour. There is a positive feedback through hb(s) from price

increase rate to the surplus demand component nb. If for instance _p=p is large and positive at a

certain moment, many agents will jump on the bandwagon and buy now with the hope that prices

will continue to rise. Of course some technical trading strategies are more elaborate than this, for

instance action in counter-phase, i.e. buying when prices are falling in the expectation that they

will rise later on. It is assumed however, that herd mentality is the dominant type of speculative

behaviour. Involving Occam's razor, the simplest transfer function that accounts for this, is

hb(s) =
Kb

1 + Tbs
(3)

Here Tb expresses the small time lag from acquiring price information to buying (or selling), that

speculative action cannot get around. This lag is due to delays in acquiring information, consider-

ations, and then getting the trading done. The gain Kb expresses how strong speculative action is,

based on the available price change rate information.

Note that we say \action", not \agents". Individual agents may of course operate in a purely

speculative or herd mode, others may again be pure \real investors". But most have composite motives

(real-economic more or less o� the mark, and speculative). When the market as a whole is considered,

however, this discussion becomes uninteresting, since the market as a whole must necessarily have a

\composite motive".
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Figure 4: A linear model Figure 5: Eigenvalues of lin-

ear model

As already stated, the surplus demand component ne accounts for the aggregate e�ect of agents

making erroneous and di�erent assumptions about the stock value, but in such a way that the mean

error in surplus demand is assumed to be zero. We now also incorporate the e�ects of di�erences in

individual speculative behaviour into this noise process, since in reality each speculative agent will act

according to a unique transfer function. It will not be linear and it will be complex, and its parameters

and even structure will change with time. We have averaged out all this individual behaviour into the

transfer function (3). We then posit that what is lost through this simpli�cation may be assumed to

be to a su�cient degree represented in the error process ne. Thus this process is assumed to have two

origins: Erroneous estimates of the stock's sustainable value, and modeling errors due to aggregation

of the speculative (bandwagon) feedback path.

If we now consider a situation where the price of the stock is at its sustainable value, the market

will have no real-economic incentive to trade. But trading will take place all the same. Individual

more or less rational, more or less well-informed agents have their own assessment, and they trade

also in this situation. In the language of our model, we may say that the error process is an exogenous

input or disturbance that excites the system, so that the market is never in equilibrium, but uctuates

around it.

The model in �gure 3 is non-linear. But if we consider small uctuations around a constant

sustainable value , it may be approximated by a linear model, see �gure 4.

Since uctuations are assumed to be small, we may ignore the saturation. And the blocks with

division and multiplication in �gure 4 may now be swapped with respectively constants 1=pr and pr.

We have a linear system which is excited by the error process ne. The transfer function from ne to

p is

hp;ne(s) =

�
prc1

Tb

�
1 + Tbs

s2 + 2�!0s+ !2
0

(4)

where the undamped resonance frequency is

!0 =

r
c1c2

Tb
(5)

and the relative damping factor is

� =

�
prc1

Tb

�
1 + c1c2Tb � c1Kb

2
p
c1c2Tb

(6)

The two eigenvalues of the system are indicated in �gure 5.

Consider a case where Kb is increased while Tb is held �xed, i.e. speculative action is stronger

while the information/decision time lag remains the same. From (5) we see that !0 is independent

of Kb, while � decreases with increasing Kb. In terms of �gure 5, this means that the eigenvalues of

the system move along the circle towards the imaginary axis. The system approaches the border of
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Figure 6: Impulse response in price due to band-

wagon feedback

Figure 7: Eigenvalues move with increasing Kb

instability, which in the language of the market translates as increased volatility: For a given variance

in the error process ne, the variance in price will increase with Kb.

Figure 6 shows responses of the system to a small and short error process pulse, i.e. where some

agents suddenly demand a certain amount of stock, even if the initial price is equal to the anchor

value pr. The amplitude of the pulse is 500 units of stock demanded out of 10.000. The pulse lasts 5

minutes, corresponding to 1/78 of a trading day of 6.5 hours. (The 6.5 hour trading day is equal to

that of the New York Stock Exchange).

The �gure shows three price responses to this pulse, with parameters !0 =constant, and � =

0; 0:4; 1. Following (6), these values for � correspond to decreasing gain Kb.

In �gure 6 | as opposed to �gure 2 | the responses are from simulations where numerical values

for system parameters have been chosen. This has been done by the following procedure: First, we

choose a total number of stocks issued =10.000, and a sustainable stock value pr = 10. We may

choose these values freely; the choices do not make any di�erence for the analysis to follow.

We assume that when all 10.000 units are demanded, respectively o�ered, on the market, this

corresponds to a price change rate of �70% per day. This decides the coe�cient c1 = 7 � 10�5. The

lower saturation occurs for n = �10:000.
We then set Kb = 0; and are back to the stage one model. Only rational trading decisions are

made, and we may posit some adjustment lag (see �gure 2). We choose Tr = 3 [days], on the basis

that such decisions are more carefully considered than technical trading decisions (see below), which

are taken during fractions of a single day.

Since we have now chosen both Tr and c1, and Tr = 1=(c1c2) (see �gure 2), we get c2 = 1=(c1Tr).

It now remains to decide the parameters Kb and Tb. Aiming for realism, we want the price

dynamics due to the bandwagon loop to be very fast, in the order of a fraction of a day. And there

should be at least one distinct overshoot (i.e. some volatility) before the response settles down.

We start by choosing !0 such that one day corresponds to �fteen full undamped (� = 0) oscillations,

see �gure 6. When damping is increased to � = 0:4, we get the impulse response delineated in bold in

�gure 6. We have some overshoot, indicating a certain amount of volatility. This is our choice for the

dynamics of the bandwagon loop. The initial price response pulse due to technical traders jumping on

the bandwagon lasts approximately 0.03 trading days = 12 minutes, and the reaction dies out after

around 30 minutes. From the choice of !0, � the corresponding pair Kb, Tb is calculated from (5) and

(6). (See end of paper for complete list of parameter values.)

At this stage, we emphasize that the above, and later, choices of parameter values, must necessarily

be somewhat arbitrary. Our defense is that simulation experiments have demonstrated that similar
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qualitative system behaviour shows up under a fairly wide spectrum of values.

There is an interesting insight that emerges from the model at this stage. Consider �gure 7, which

shows the the positions of eigenvalues (drawn as small circles) as a function of two values of gain

We observe that the system is marginally stable for Kb = 14525. On the other hand it is over-

damped (non-volatile) for Kb = 14185! Since real stock markets are volatile, i.e. underdamped

(0 < � < 1), this suggests that there is some adaptive mechanism at work in the market to keep Kb in

the surprisingly narrow band 14185 < Kb < 14525, i.e. just under the instability border. We suggest

that the mechanism is the following: One one hand, agents jump in to trade on volatile movements.

But by their entry, they increase Kb and thus volatility. On the other hand they abstain when the

market is too volatile (nervous market), thus decreasing Kb and volatility.

4 An index market with imperfect information, bandwagon

e�ects and long-term optimistic or pessimistic moods

The model is to be further elaborated, but �rst we will argue that from now on we may consider it to

represent not a speci�c stock, but a \composite stock" composed of stocks from all �rms listed on a

stock exchange, such that the composite stock price is proportional to the stock exchange index. We

make some assumptions in connection with this:

� All categories of stock have similar dynamics.

� The p=e ratio for the composite stock is de�ned as being the total value of all stocks traded on

the exchange, divided by the total sum of earnings.

These assumptions mean that the composite stock p=e ratio (from now on called an \index" or the

\price" of the composite stock) will also uctuate around pr, with dynamics that are similar to those

for one category of stock. The di�erence is that a price shock for one category of stock only, does not

impact very strongly on the index.

The aggregation step from one category of stock to an index is comparable to the earlier step of

aggregating all agents into one composite agent. We uphold all variable and parameter names and

numerical values introduced for the stock model, with the note that they now pertain to the index.

By now we are ready to consider an augmented model as shown in �gure 8.

Again we hold that model imperfections and approximations, and uctuations in demand for the

composite stock implied by the index, is accounted for by a zero mean noise process as introduced

earlier. But we have for the time being rescinded this stochastic excitation ne, since the dynamics to

be examined in this section will be shown not to depend upon being driven by an external input. We

will reintroduce the noise input later on.

The additions to the model are indicated by the shaded area. Consider the block in the upper

right-hand corner. The instantaneous price increase rate is an input to the block, a low pass �lter

with time lag Tf of a one year magnitude. The rationale for this �lter is that the increase rate of

\optimism" (or con�dence, bullishness, positive \animal spirits" in the terminology of Keynes) is

assumed proportional to the long-term trend in index increase. Hourly, daily, even weekly and (to

some degree) monthly uctuations are disregarded; there is a sluggishness in market mood. Price rise

has to be persistent over a long time (years) before the market really picks up. On the other hand,

when the price culminates and starts falling, the market will need a corresponding amount of time

for such a change of a�airs to sink in. The increase rate in optimism is set equal to the markets'

perception of the long-term index increase rate. Optimism is given a numerical value, and a range

which is both positive and negative. (Thus pessimism corresponds to negative optimism.)

By now it should be clear why it has been necessary to transit from an individual category of

stock to an index: Market mood is a function of the behaviour of the aggregate of all stocks, not one

category only.
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Figure 8: Model incorporating long-term mood dynamics

Figure 9: Optimism response to a pulse in price

increase rate

Figure 10: Sigmoid function

In the absence of any perception of a long-term tendency for price to change (i.e. a at price level

over a long period), the current level of optimism will slowly erode to zero, through the factor c3. The

argument for this is that the market will gradually forget its initial mood and tend towards a neutral

attitude (zero optimism or pessimism) if the current mood is not maintained by a sustained increase

or decrease in stock price.

We may now try an experiment. We isolate the two blocks in the upper part of the �gure from the

model, input a rectangular price increase pulse, and observe the response in optimism given by this

model. We assume a one-year (de�ned as 250 trading days) constant price increase rate pulse. This

pulse, and the corresponding response in optimism, is illustrated in �gure 9.

The input pulse is not shown to scale. Parameter values for the simulation are chosen through a

procedure described below. Note how optimism culminates after around 500 trading days (2 years).

If we compare the time scales of �gures 6 and 9, we observe a very large di�erence between the fast

dynamics of the bandwagon loop, as opposed to the long-term mood loop. Thus we are dealing with

a sti� system of di�erential equations.

To complete the explanation of the long-term mood loop, we now turn to the nonlinear sigmoid

function . (The corresponding block in �gure 8 is outlined in bold, to signify a nonlinear function.)

The rationale for using the sigmoid is to account for upper and lower saturation in the system. The

sigmoid function is shown in �gure 10.
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Figure 11: Cycles due to long-term mood dynamics

The function, including a gain c4 introduced for convenience (see �gure 8), outputs an additional

demand component (measured in cash terms) which stems from the long-term mood of the market.

It may be positive or negative. This money term translates into current additional composite stock

demand no (\o" for optimism) through division by the current index. Upper soft saturation is assumed

to make itself felt when the market is euphoric, i.e. optimism is at a maximum. The will to spend

money on additional stock acquisition is there, but a very large amount of money has already been

spent in the stock market, and fresh cash and credit is getting scarce. At the other extreme, when

pessimism is at its maximum, agents holding stock are reluctant to sell it at the going bottom price,

since there is very little to gain. This explains the lower saturation. The sigmoid function is expressed

in the form

�(x) =

 
p+ n

1 +
�
p
n

�
e�Ks[(p+n)=pn]x

!
� n (7)

The parameters are:

p; n = The maximum saturation (asymptotic) value of �(x) is p. The minimum saturation is �n.
Ks = The slope of �(x) for x = 0: Thus Ks expresses the gain of �(x) for small excursions from a

neutral mood, into optimism or pessimism.

Note that (7) has the necessary property �(0) = 0, i.e. a neutral market mood results in zero

additional demand. See also �gure 10.

We have in this section introduced two �rst-order linear blocks and one non-linear relation, which

together form the long-term mood loop. Figures 9 and 10 imply that numerical values for the param-

eters associated with this loop have been chosen. This is done in the following way: It is required

that the system shall cycle regularly between euphoria and recession, but for the time not allowing

panics to occur. The maximum price (i.e. p=e ratio) is set to approx. 25, the minimum to approx. 5.

Furthermore, a full cycle (which is at this stage not shortened by panics on the downswing, see next

section), shall last 10 years (one year is de�ned as 250 trading days). It is demanded that upswings

shall have an essentially exponential growth shape, and that downswings shall be faster than upswings.

Based on these conditions, all parameters have been decided together, through educated guessing and

a comprehensive simulation-based trial-and-error process.

With the resulting choice of parameters, the cycles look like in �gure 11. This is a stable limit

cycle. In the next subsection we will see how this pattern is distorted by panics occurring near peak

price levels, but we will also observe how this cycle remains an attractor that decides the fundamental

long-run dynamics of the system. We emphasize that from this it follows that our model is not

dependent upon a crash-and-subsequent-recovery mechanism for cycles to occur. The upswing is due

to the spreading and self-reinforcing belief that \if I get in now, I can cash in my investment with a

pro�t at a later stage". But the upswing sooner or later has to culminate at some level, when the

perception has spread su�ciently that current prices have grown too high in relation to the sustainable
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Figure 12: Model including panic mechanism

Figure 13: Two peaks with several crashes

value of the stock, and also due to increasing scarcity of additional money to invest in stocks. This

reduces the growth rate of surplus demand and through this, the stock price growth rate. In the next

round this reduces the growth rate in optimism, further reducing the demand growth rate, and so

on. Optimism reaches a peak, and a feeling sooner or later overwhelms the optimistic mood of the

upswing, and more stock is o�ered than demanded on the market. This further erodes optimism, and

we are gradually into a downswing, which also needs time to build up momentum. This momentum

causes the price to fall below sustainable value. But things will later pick up again when the earlier

pessimistic mood is mostly forgotten, combined with a spreading recognition that the stock market is

now generally undervalued. The upswing starts, and one cycle is completed. The period of a cycle is

in the main decided by the inertia of market perception: It needs time to absorb a persistent tendency

in price change, and it needs time to forget.

Note that our explanation for stock market cycles is a very psychological one. It has little connec-

tion with such other macroeconomic cycle explanations as Goodwin's business cycle model [6] where

cycles are due to worker-capitalist struggle over output, or build-up of indebtedness and related �nan-

cial fragility (Minsky's `�nancial instability hypothesis' [7], as modeled and simulated by Keen [8], or

Andresen [9]).

Our purpose is not, however, to contest the validity of these other models|it is to focus on one

speci�c approach that may be contain some truth together with other approaches. But we suggest

that the mechanisms presented here have become relatively more important as the �nancial sector

has grown in size and inuence, as unions have lost power, as the focus of the media and thus public

opinion, has turned from �nance as an instrument for enhancing production, to the �nancial market

as a place for playing games for pro�t; i.e. Keynes' \Casino".

The reader may at this stage object that the downswing predicted by our model is very slow and

well-behaved. Where are the panics, which may erase a substantial part of an index in a single trading

day? In the next section we will extend the model to account for this.

5 A market with imperfect information, bandwagon e�ects,

long-term optimistic or pessimistic moods, and panics

A modi�ed model augmented with a panic mechanism is shown in �gure 12. The additions to the

model in the previous subsection (�gure 8) are indicated by the shaded area in �gure 12.

We designate this \the panic subsystem". We note that this subsystem has two inputs: The ratio

p=pr, and relative price change rate, _p=p. The output is a negative pulse, designated � in the �gure.

Such a pulse has the e�ect of abruptly reducing optimism and thus the demand component no. We
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will explain the panic subsystem by starting to the right in the shaded part of the �gure, with the

expression log(p=pr). We have

log(p=pr) = log(p)� log(pr) =

Z p

pr

dx

x
=

Z t1

t0

_p

p
(t)dt (8)

Here the current price and time is p(t1), and the system starts with p(t0) = pr, i.e. price level equal

to sustainable, \fundamental" value. The logarithmic expression is equivalent to integrating relative

price change rate _p=p, with initial value p(t0) = pr. Thus we have an expression that will be larger

the further away from sustainable value the price is. This expression is assumed to give a measure of

\wariness" in the market. By this we mean that agents will on the average be more sensitive to large

downward blips in stock prices when the current prices are much higher than sustainable value. The

wariness factor is multiplied with the output of a dead-zone block that ensures that only downward

price blips above a certain magnitude are passed on (i.e. noticed by the market), as indicated by

the graphics in that block. If prices are not too far away from sustainable value, however, even large

downward movements are not considered to be danger signals. The �ltered blips are passed on through

a constant gain and transfer function in parallel, as shown in the left part of the shaded area, and

then input to the optimism subsystem. The rationale for the transfer function, which has low-pass

character with a time lag 1=c8 (of magnitude a couple of weeks), is to account for medium-term

memory in the market of recent strong downward blips in an overvalued situation.

At this stage it should be noted that it is not self-evident that this panic sub-system will actually

lead to panics and crashes. We have just made some reasonable behavioural assumptions about

wariness etc. for agents, and implemented them in the model. But we will see that panics will occur.

Now to the task of deciding values for the parameters, this time for the panic sub-system. The

procedure has been the same as described in the preceding sections: back and forth between simula-

tions, educated guesses, parameter adjustments, new simulations. The resulting parameter value set

is given at the end of this paper. The variance and character of the stochastic noise process ne has also

been decided as part of this selection process. Initially white noise was tried, which is uncorrelated

with itself between sampling intervals (13 samples per trading day, i.e. a sample every half hour).

This, however, gave price movements that displayed distinct swings only from hour to hour, but not

over a couple of days. The white noise process was therefore substituted with white noise �ltered

through a �rst order low-pass �lter with time lag = 3 trading days. This corresponds to a train of

overlapping exponentially-tailed pulses exciting the system, and gave autocorrelated price dynamics

over the week that (by visual inspection) resembled real-world index movements well. We emphasize

that panics and crashes occur whether one employs white noise, correlated noise or a periodic pulse

process to excite the system. Figure 13 shows a simulation with the chosen parameter values.

The simulations done were quite time-consuming: We wanted to simulate over a couple of peaks,

where the time span is somewhat less than ten years = 2500 trading days, but where we also had to

account for price movements which may change signi�cantly from half hour to half hour. We thus had

to use a sti� di�erential equation solver. To reduce simulation time, simulations were started from a

system state somewhat into the peak (euphoric) phase of the �rst cycle. We observe from �gure 13

that both the peak phases displays panics. Each panic is indicated by spikes, four during the �rst

euphoric phase, two during the second. These spikes are the value of the variable � de�ned in �gure 12

(note: the scale on the ordinate axis pertains to price only, the other variables are not shown to scale.

For convenience, �� is shown, so the spikes turn up positive in �gure 13). � is zero when the negative

price blip is within the limit in the dead-zone function, the \background noise level" that has to be

surpassed before the market is alarmed. If it is bigger than this limit, however, its impact is decided

by the value of the \wariness factor" (8), through multiplication with this factor. The product, a

negative pulse, is then transmitted to the state that represents optimism, and this state is abruptly

reduced. The trajectory for the optimism state is also given in �gure 13. The abrupt decrease in

optimism sets o� a similarly abrupt decrease in demand, which again transmits an ampli�ed negative

price blip to the input of the dead-zone function. The loop is closed. We have positive feedback and

a mechanism to explain panics. More on this further below.



240 A Model of Short- and Long Term Stock Market Behaviour

Figure 14: Two peak phases over 300 days Figure 15: Zooming in on the 10 days around a

panic

Figure 14 shows magni�ed portions of the two peak parts of the price curve. Note the time scale,

a range of 300 trading days.

We observe that the two big panics during each of the two peak phases result in respectively a

12% and 6% price fall in a very short time. We have by this established that the panic mechanism

works as predicted.

To get a clearer picture, we stretch the time axis even further, to get a glimpse of dynamics over a

few days. The result is shown in �gure 15. One day is divided into 13 sampling intervals. An initial

downwards blip that is large enough to pass the dead-zone function, lasts only one sampling interval.

The further downslide that may be observed for both peak phases, must therefore be a result of the

aforementioned positive feedback loop.

If we ignore the panic events, and also trends, on the graphs in �gures 14 and 15, and inspect the

price excursions under normal conditions, we note that prices uctuate between approx. �0:2 to �0:3,
which related to a level of 20 to 21, corresponds to �1:0 to �1:5 % . This is considered a realistic

magnitude of day-to-day volatility.

If we compare the two euphoric phases in �gures 13 to 14, we observe that they are quite di�erent

in character. This can only stem from di�erences in the random noise process that excites the system,

since all other conditions at the start of a euphoric phase are similar. We will now discuss this

proposition more closely by presenting a series of simulation runs where the only parameter that is

changed, is the \seed" integer initiating the random generator. This means that we have exactly the

same dynamic system, starting from exactly the same initial state, but excited by di�erent realizations

of the same stochastic process. The results for eight such runs are given in �gure 16.

The integer listed on each graph is the corresponding seed integer. The upper left run is identical

to the case already presented in �gures 13 to 15. If we consider the eight graphs as a whole, the

following observations may be made:

An early crash before price has gone to high, is a good thing in the sense that the crash will usually

not be to big, as opposed to the case with seed = 2106, where a panic-free growth far above 20 results

in a big 30% crash.

We also note that (small) crashes at an early stage contribute to reducing the danger of big

crashes later. This, by the way, to some degree justi�es the sometimes euphemistic term \correction"

for crashes, so commonly used to calm market nerves.

Furthermore, we note that early crashes will not stop prices from continuing their rise later on,

before culminating. This is due to the inertia of a general and still growing optimistic mood, a mood

that needs more time and adversity to turn sour. On the other hand, if a big crash occurs when the

euphoric phase is in a later and more mature stage, this crash will contribute to an earlier start of
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Figure 16: Euphoric phases for di�erent seed integers

the inevitable general downslide. Generally, the presence of panics and ensuing crashes will lead to a

shorter period for the long-term cycle than what is displayed by the panic-free limit-cycle model in

�gure 11.

To gain insight into the character of the euphoric phase disturbed by panics, consider the graphs

for the optimism state (also shown in the plots in �gure 16). Note the \circular-saw-tooth" appearance

of these graphs. After a crash optimism growth is slower, if the crash happens on the upswing. If the

crash happens on the downswing, the downwards slide is steeper afterwards.

As mentioned, the case with seed = 2106 displays the biggest crash of the eight cases. At the

bottom of the corresponding panic spike one may observe a small decaying exponential tail. This

accounts for the medium term memory in the market of the crash, and stems from the low pass

�lter block with the coe�cients c7; c8; c9 in �gure 12. Removing this block (and that memory e�ect),

however, does not signi�cantly change system dynamics.

6 Conclusion and suggestions

There are a couple of important mechanisms that are not incorporated in the current model. One

phenomenon is \rallying", which takes place over a couple of days, or even several weeks. This

phenomenon may occur as a consequence of a feeling after a recent panic or strong fall, that now is

the time to buy cheap because stocks have fallen too much and will rise|which of course is a self-

ful�lling prophecy if enough agents think this way. Or it may take place due to exogenous impulses,

for instance an announcement of lower Central Bank interest rates, or an announcement of a what is

believed to be a credible IMF rescue operation towards an important country or group of countries.

In terms of our model, this may be taken care of by introducing additional parallel feedback
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loops containing �rst- or second-order low pass transfer functions with time lags of a days/weeks

magnitude, thus �lling out the \gap" between the very short- and very long-term dynamics expressed

by the corresponding loops in the current model. Such additional loops should enable the system to

express swings over days and weeks, for instance rallying. Furthermore, one could look more closely

into the modeling of exogenous impulses. In the current model, their impact all decay at the same

rate, with a time constant of three days, and they arrive regularly (every half hour). A probably more

realistic assumption is to let this noise be a Poisson process, thus generating impulses at irregular

intervals, and more important|let these pulses decay at di�erent rates, so that the model accounts

for the fact that some news have more lasting inuence on the market than other.

These suggested modi�cations will not, however, invalidate some insights and suggestions for

further research that emerge from working with current model:

� A positive \bandwagon" feedback structure, and observed overshooting during fractions of a

trading day, imply that the system is all the time very close to instability. Such a knife-edge

balance can only be ensured by the market as a whole adaptively tuning the feedback gain in

this loop.

� A pure psychological mood propagation mechanism, combined with a roof and a oor for de-

mand, will by itself generate long-range cycles. The time lags of mood propagation and forgetting

are decisive for the cycle period.

� Credible-looking panics and crashes can be generated by the mechanism described in this pa-

per, which basically says that panics are triggered when two conditions are ful�lled: Gross

overvaluation, and a random downward price blip that is so large that it \stands out".

� By introducing market mood (\optimism") as a system state, we have a possible means of

modeling and simulating couplings between di�erent stock markets. Obviously, what happens

on the NYSE inuences the other exchanges, and vice versa. Interactions can be realized by

connections from price rate change in one model to the mood state of another separate stock

exchange model.

A �nal note: I wish to express my thanks to Dr. Steve Keen, the University of Western Sydney,

for stimulating discussions, help and suggestions.

7 List of parameters

� Sampling period (i.e. simulation step length) T = 1=13 = 7:692308� 10�2

Tr = 3 c1 = 7:0� 10�5 c2 = 4:761905� 103

Kb = 1:424547� 104 Tb = 3:752636� 10�5

� calculated from � = 0:4; and !0 = 94:24778

Tf = 200 c3 = 1:4� 10�3 c4 = 104

p = 15 n = 2:5 c5 = 0:1818182

c6 = 14:86250 c7 = 2:26� 10�2 c8 = 0:15

c9 = 0:339 deadzone = 0:18

� variance of discrete white noise =105

� �lter time lag to make the noise correlated = 3,

� Initial values for the system's three main states (faster system modes have initial values = 0):

{ optimism = 2:366744� 10�1

{ long-term mood �lter state =1:525� 10�3
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{ price =1.434

� seed = 123456 in the �rst round, but is then varied as shown in �gure 16.
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Abstract

In this paper we consider how suppliers in a cobweb model may learn about their economic
environment. Instead of assuming the one step backward-looking expectation scheme of the

traditional linear cobweb model, we consider the subjective estimates of the statistical distribution
of the market prices based on L-step backward time series of market clearing prices. With constant
risk aversion, the cobweb model becomes nonlinear. Su�cient conditions on the local stability of

the unique positive equilibrium of the nonlinear model are derived and, consequently, we show
that the local stability region (of the parameters of the equation) is proportional to the lag length
L. When the equilibrium loses its local stability, we show that, for L = 2, the model has strong

1 : 3 resonance bifurcation and a family of �xed points of order 3 becomes unstable on both sides
of criticality. The numerical simulations suggest that the model has a simple global structure, it
has no complicated dynamics as claimed recently by Boussard. However, complicated dynamics

do appear when the model is modi�ed with constant elasticity supply and demand.

1 Introduction

Consider the well-known cobweb model:�
p�t�1;t = aqt + b (supply);

pt = �qt + � (demand);
(1)

Here, qt and pt are quantities and prices, respectively, at period t, p�t�1;t is the price expected at time

t based on the information at t� 1, and a; b; � (> 0) and � < 0 are constants.

Instead of assuming the backward-looking expectation scheme p�t = pt�1 as in Boussard [2], we

rather assume that p�t is a random variable drawn from a normal distribution. Let �p�t and v
�

t be the

mean and variance of p�t , respectively. With constant absolute risk aversion A, the marginal revenue

certainty equivalent is 1

~pt = �p�t � 2Av�t qt: (2)

Suppose a linear marginal cost, as in (1), so that the supply equation, under marginal revenue certainty

equivalent becomes

~pt = aqt + b: (3)

Combining (2) and (3) and equating supply and demand gives the market clearing price in period t

as a function of the subjective mean �p�t and variance v�t

pt = � + �
�p�t � b

a+ 2Av�t
: (4)

1With constant absolute risk aversion A, we assume the certainty equivalent of the receipt r = pq is R(qt) =

�p�t qt�Av
�

t q
2
t . Then maximisation of this function with respect to qt leads to the marginal revenue certainty equivalent

~p = @R

@qt
= �p�t � 2Av�qt
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We assume agents form their subjective estimates of the mean and variance by considering past

market clearing prices over a window of length L, that is

�p�t =
1

L

LX
i=1

pt�i; (5)

and

v�t;L =
1

L

LX
i=1

[�p�t � pt�i]2: (6)

Let

xi;t = pt�(i�1); i = 1; 2; � � � ; L:
Then, it follows from (5){(6),

�p�t+1 =
1
L
[x1;t + x2;t + � � �xL;t];

v�t+1 =
1
L

PL
i=1[�p

�

t+1 � xi;t]2: (7)

Hence

x1;t+1 = pt+1 = � + �
�p�t+1 � b

a+ 2Av�t+1

: (8)

Because of the dependence of the subjective mean �p�t and variance v�t as price lagged L periods

equation (8) is a di�erence equation of order L. It is more convenient to reduce it to a system of L

�rst order di�erence equations. Let

x = (x1; � � � ; xL); xt = (x1;t; � � � ; xL;t);

and

f(x) = � + �
(1=L)[x1 + � � �+ xL]� b

a+ (2A=L)
PL

i=1([x1 + � � �+ xL]=L� xi)2
:

Then equation (8) can be written as the following di�erence system8>>>>><>>>>>:

x1;t+1 = f(xt)

x2;t+1 = x1;t
x3;t+1 = x2;t
...

xL;t+1 = xL�1;t

(9)

2 Local Stability

One can see that the system (9) has a unique positive �xed point (po; po; � � � ; po) satisfying

po = � + �
po � b
a

which implies po =
a���b
a��

.

It can be veri�ed that

@f

@xi
(po; � � � ; po) = �

aL
for i = 1; � � � ; L:
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Therefore the Jacobian matrix of the system (9) at the steady state is given by the L� L matrix

J =

0BBBBB@
�
aL

�
aL

� � � �
aL

�
aL

1 0 � � � 0 0

0 1 � � � 0 0
...

...
. . .

...
...

0 0 � � � 1 0

1CCCCCA : (10)

Denote  = � �
aL

and Di(L) = det(�I � J)i�i with i = 1; 2; � � � ; L. We then have

D1(�) = �+ ; D2(�) = �D1 +  = �2 + �+ ;

and more generally,

Di(�) = �Di�1 + ; i = 1; 2; � � � ; L:
Thus

DL(�) = �L + �L�1 + � � �+ �+ : (11)

Using Jury's Test (see appendix A), we can derive the following local stability result. The proof

of theorem 23.1 can be found in the appendix A.

Theorem 23.1 The unique �xed point of the system (9) is locally stable if and only if �L < �
a
< L.

It is interesting to notice that both the equilibrium (po; � � � ; po) and the local stability condition

of the system (9) are independent from the risk aversion A. As pointed out by Boussard [2], this is

a peculiarity of the particular expectation hypothesis chosen here. Yet, under our assumption, j�=aj
plays a key role on the local stability of the positive equilibrium of the system (9). Furthermore, the

local stability condition j�=aj < L implies that the region of the parameter �=a on the local stability

of the positive equilibrium of the system (9) is proportional to the lag length L. Theorem 23.1 tells

us that larger time lags lead to larger region of stability (in terms of the parameter �=a).

3 Bifurcation Analysis

Let us consider the simplest case �rst, that is the case when L = 2. Then we have a system�
x1;t+1 = f(xt)

x2;t+1 = x1;t;
(12)

where

f(xt) = � + �
(1=2)[x1 + x2]� b
a+ (A=2)[x1 � x2]2 ; x = (x1; x2) 2 R2 :

Let yi = xi � po (i = 1; 2) so that the �xed point is at the origin. We then have�
y1;t+1 = g(yt)

y2;t+1 = y1;t;
(13)

where

g(yt) = (� � po) + �
(1=2)[y1 + y2] + (po � b)
a+ (A=2)[y1 � y2]2 ; y 2 R2 :
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The Jacobian of the system (13) at the origin is then given by

J2 =

�
�
2a

�
2a

1 0

�
:

From L = 2, we have  = � �
2a
. It follows from Theorem 23.1 that the equilibrium (po; po) of the

system (12) will lose its stability when  passes through 1. Also, when  is near 1, the Jacobian

matrix J2 has a pair of complex eigenvalues, say � and �� with

� = �() =
1

2
[� + i

p
(4� )] = pei�;

where � satis�es

sin � = �
p


2
; cos � =

p
4� 
2

:

Let �o be the value of � when  = 1, that is,

�o =
1

2
[�1 + i

p
3]:

Obviously, �3o=1. For a map in R2 , according to Kuznetsov [6] (page 350), there is no "strong

resonances" if there is an eigenvalue, say ~�, satisfying ~�q 6= 1 for q = 1; 2; 3; 4. Otherwise, we say the

map has a 1 : q resonance (q = 1; 2; 3; 4). Hence our map has a 1 : 3 resonance. As pointed out by

Hale and Kocak [4] (page 481), the dynamics of such maps | strong resonances | can be exceedingly

complicated and the answer is not yet completely known. The complexity of such maps is illustrated

in one of the Example 15.34 in Hale and Kocak [4] (pages 481{482). For more detailed discussion on

the bifurcations of �xed points in discrete-time maps on R2 with both weak and strong resonances,

we refer the reader to Iooss [5] when the maps involve one parameter and to Kuznetsov [6] when the

maps involve two parameters.

The rest of this section is devoted to the study of generic bifurcations of the �xed points (po; po)

of the map de�ned by (12). To keep the discussion simple, we will treat  as the only parameter of

the map.

To perform a standard normal form calculation (see Arrowsmith et. al. [1]) for the system (13),

we write the function g in the following form

g(y1; y2) =
X

j;k;j+k�1

gjky
j
1y

k
2 ;

with 8>>>><>>>>:
g10 = g01 =

�
2a

g11 =
�(po�b)A

a2

g20 = g02 = � 1
2

�(po�b)A

a2

g30 = g03 = � 1
4
�A
a2

g21 = g12 =
1
4
�A
a2
:

We now introduce complex coordinates

z = �iy1 + iy2��:

From which, we have

y1 =
(�i)[�z + ���z]p

(4� ) ; y2 =
z + �zp
(4� ) :
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Then the linear part of the map becomes

zt+1 = �i[�y1;t � y2;t] + i��y1;t = �i[(�+ ��)y1;t � ���y2;t] + i��y1;t = �zt:

Hence the mapping can be written in a complex form

zt+1 = �zt +
X

j+k�2

1

j!k!
ajkz

j
t �z

k
t ;

where 8>>>>>><>>>>>>:

a10 = g10
�i�p
(4�)

a01 = g01
�i��

sqrt(4�)

a11 = 1
(4�)

[�i(�+ ��)g11 � 2���g20 + 2g02]

a20 = 2
(4�)

[�i�g11 � �2g20 + g02]

a02 = 2
(4�)

[�i��g11 � ��2g20 + g02]:

The following Lemma on the normal form of the map (13) (with 1 : 3 resonance) can be found in

Kuznetsov [6] (p.382).

Lemma 23.1 (Normal form map for 1:3 resonance) The map (13) can be transformed by an invertible

smooth and smoothly parameter-dependent change of variable, for all  = 1+ � with su�ciently small

j�j, into the form

� 7! �(�) = �()� +B()��2 + C()�j�j2 +O(j�j4); (14)

where

B() =
a02()

2
;

and

C() =
a20()a11()[2�() + ��()� 3]

2[��()� 1][�2()� �()] +
ja11()j2
1� ��()

+
a21()

2
:

It can be veri�ed that B() = 1
2
a02() = (po � b)Aa 1

4�
(i�� + 1)2. Hence, B(1) = 1

18
A
a
[� � b][2 +p

3� i]2. Using a result from Iooss [5] (p.110, Theorem 1), we have the following bifurcation result.

Theorem 23.2 For the system (12), if Re(B(1)) 6= 0 (which is true in our case), then there exists a

single one-parameter family of �xed points of order 3 bifurcating from the positive equilibrium (po; po).

The positive equilibrium, which is stable for  < 1, becomes unstable for  > 1, where the family of

�xed points of order 3 which bifurcates on both sides of criticality is unstable on both sides.

Theorem 23.2 indicates the dynamic structure near the positive equilibrium Po(po; po) and the

hyperbolic periodic points bifurcating from Po near the critical value  = 1. In the following, two

most common numerical simulation techniques, phase diagrams and bifurcation diagrams, are used in

the study of the global dynamics of the nonlinear model.

Numerical simulations

The case L = 2. In this part, we consider the case of L = 2, that is the system (12). The parameters

a; b; A and � are selected to be �xed and � are varied to characterize the changing of . In the

following discussion, we choose a = 1; b = 0; A = 0:005 and � = 11.
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Figure 1: Pseudo-phase plot of (12) with � =

�1:95
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Figure 2: Basin plot of (12) with � = �1:95
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Figure 3: Pseudo-phase plot of (12) with � = �1:95 and the structure near the saddle point set S

Firstly, let � = �1:95 so that 0 <  < 1. In this case, apart from the �xed positive equilibrium

Po(po; po) with po = 3:8596, the system (12) has two sets of period three �xed points, denoted

S = fS1; S2; S3g and P = fP1; P2; P3g, where S1 = (4:2295; 2:7525); S2 = (4:2295:4:2295); S3 =

(2:7525; 4:2295) and P1 = (10:4993;�9:4737); P2 = (10:4993; 10:4993); P3 = (�9:4737; 10:4993): It
follows from Theorem 23.2 that, when � = �1:95 (so that  < 1), Po is locally stable and the period

three point set S corresponds to the order 3 bifurcating from the positive equilibrium Po.

Fig.1 shows the phase plot of (x1;t; x2;t) = (pt; pt�1), which is often called the pseudo-phase plot

of the system. We select four initial values: I1 = (2:68; 4:42); I2 = (2:88; 3:8); I3 = (2:89; 3:8) and

I4 = (4:6; 4:0). Numerical simulations in Fig.1 indicate that, solutions with the initial points I3 and

I4 converge to the �xed point Po, while the solutions with I1 and I2 converge to the period three

point set P . One can choose other initial values to do the simulations, but it turns out that all the

solutions with di�erent initial values will converge to either Po or P , as indicated in Fig.1. A more

detailed numerical simulation on the basins of the attractors Po and P are plotted in Fig.2, in which,

all the solutions with initial values from the shaded area converge to Po and the rest of the solutions

converge to P .

In Fig.3we enlarge the central part of Fig.1, we can then see clearly the structure of the bifurcating

point set S. We select four initial values (4:6; 4:0); (4:7; 4:0); (6:0; 4:0) and (2:0; 2:8). As suggested by

Iooss [5] (pp. 127{128), S is a set of saddle points.

Theorem 23.2 asserts the bifurcating behavior when  is near the critical value 1. Now the question

is whether the single one-parameter family of �xed points S of order 3 exists when  moves away from
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Figure 4: Solutions pt of (12) with � = �1:82206
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Figure 5: Pseudo-phase plot of (12) with � =

�2:0

1. In fact one can check that, when � increases from �1:95 to �1:82207, apart from the �xed

equilibrium Po, the two set of one-parameter (�) family of �xed points S and P of order 3 continue

to exist and the distance between P and S, which is de�ned by maxfjPi � Sij; i = 1; 2; 3g, decreases.
When � = �1:82206, the system has only the positive �xed equilibrium Po and the solutions with

initial values (6, 8.5), (6, 8.6), (6, 8.7) and (6, 10) are plotted in Fig.4. This implies that there exists

�b 2 (�1:82207;�1:82206), or equivalently there exists a b < 1 such that, for b <  < 1, the

structure of the solutions is given by Fig.1 and Fig.3; while for  < b (and near b), the structure

is indicated by Fig.4. Noting that the solutions remain near an order 3 periodic solution before they

converge to Po with po = 3:897861846. An interesting �nding is that, when we �xed the �rst initial

value, say xo = 6, and increase the second initial values, say yo, from 10 up to near 30, the numerical

steps needed for the convergence increases, after 30, the numbers of steps decreases.

As � decreases from �b to �2 (but greater than �2), that is  increases from b to 1, the distance

between two sets of one-parameter (�) families of �xed points S and P of order 3 increases and,

correspondingly, the distance between S and Po decreases (to zero). When � = �2:0, that is  = 1,

the system has a �xed equilibrium Po with po = 11=3 and an order 3 periodic set P . The phase

structure in this case is indicated in Fig.5, in which four initial values (2.2, 6), (2.62, 6), (2.3, 6) and

(3.67, 3.67) are selected. One can see that P is attracting and Po is unstable and it has also the

properties of the saddle point S with both stable and unstable manifolds.

Now we choose � = �2:2 (so that  > 1), then the system (12) has a �xed equilibrium Po with

po = 3:4375 and two sets of order 3 bifurcating points P and S. In Fig.6, we have the phase plot

of the solutions with initial values (3.43, 3.43), (1.85, 1.5), (1.8, 1.5), (2.1, 2.25) and (2.15, 2.25). It

shows that P is the only attractor. 7shows the convergence of the order 3 periodic orbit P , in which

the initial value (1, 4) is selected.

General case. In general, near the critical value  = 1, the system (9) has a periodic L orbit (�xed

points of order L) bifurcating from the positive �xed equilibrium. The bifurcating periodic L orbit

may have a similar behaviour as the set S as in the case of L = 2. 8and 9show the convergence of the

unique �xed equilibrium of the system with L = 10 and � = �8:0( < 1), where initial value (1.2,

1.3, 1.2, 1.3, 1.2, 1.3, 1.2, 1.3, 1.2, 1.3) is selected. When L = 10 and � = �12,  > 1, 10 shows the

bifurcation of the positive equilibrium and the attractivity of a family of periodic 10 orbits. Numerical

simulations show that the system (9) with L > 2 has similar dynamics to the one with L = 2.

Under the assumptions �p�t = p̂ = constant and �p�t = pt�2, respectively, Boussard [2] shows that

these assumptions may result in the market generating chaotic price and quantity series. He suggested

that it would be more rational to treat both prices and quantities as symmetrical and this is indeed
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Figure 9: Solution Pt with � = �8

the basic assumption in this paper. Corresponding to our case when L = 2, he claimed that the

main conclusions remain approximately the same. However, our results suggest that, under these

more general symmetrical assumptions, the market generates simpler dynamic behaviour. In order to

generate more complicated dynamics and chaotic motion, we need to replace p and q in equations (1)

by their logarithms, which is also a natural solution to avoid negative prices and quantities that can

arise under the linear supply and demand curves. This will be treated in the next section.

4 Constant Elasticity Supply and Demand Curves

The problem of making use of linear supply and demand curves is the occurrence of negative values

for prices and quantities. One solution to this problem is to replace p and q by their logarithms. That

is, we replace the demand equation in (1) by

pt = �q�t : (15)

and the supply equation by

p�t = bqat (16)

where a; b and � are positive and � are negative constants.
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Figure 10: Solution Pt with � = �12

One can rescale the equations by letting 2 Qt = qat . We then have

pt = �Q
�=a
t (17)

and

p�t = bQt: (18)

Under constant absolute risk aversion A, the certainty equivalent of the revenue r = pQ is �p�tQt �
Av�tQ

2
t . Thus the marginal revenue certainty equivalent is

~pt = �p�t � 2Av�tQt: (19)

Suppose a \linear" (in terms of Q, not q) marginal cost so that the supply equation is

~pt = bQt: (20)

These results lead to the supply equation

�p�t � 2Av�tQt = bQt; (21)

that is

[b+ 2Av�t ]Qt = �p�t : (22)

Assume �p�t and v
�

t are formed as (5) and (6) in section 1, then from (22) and (15) the equality of

supply and demand implies the market clearing quantity�
b+

2A�2

L

LX
i=1

�
1

L

LX
k=1

Q
�=a
t�k �Q�=a

t�i

�2�
Qt =

�

L

LX
i=1

Q
�=a
t�i : (23)

Using equation(17), we can rewrite the equation (23) in terms of the price

pt = �

� 1
L

PL
i=1 pt�i

b+ 2A
L

PL
i=1(

1
L

PL
k=1 pt�k � pt�i)2

��=a
: (24)

Let

ui;t = pt�(i�1); i = 1; 2; � � � ; L: (25)

2This rescaling is equivalent to a change in numeraire
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Figure 14: Pseudo-phase plot with � = �2:2

Then the equation (24) can be written as the following L dimensional system of �rst order di�erence

equations 8>>>>><>>>>>:
u1;t+1 = �

�
(1=L)

PL
i=1 ui;t

b+(2A=L)
P

L
i=1((1=L)

P
L
k=1 uk;t�ui;t)

2

��=a
u2;t+1 = u1;t

...

uL;t+1 = uL�1;t:

(26)

The system (26) has a unique positive equilibrium u1 = u2 = � � � = uL = b(�=b)a=(a��). One can

verify that, at the equilibrium point, the system (26) has the Jacobian matrix J as de�ned in section

2. Therefore, Theorem 23.1 holds for system (26) too.

Fig.11 is the phase plot of system (26) when L = 2 and � = �1:9 (and hence  < 1). We select

three initial values I1(2:36; 2:4), I2(2:4; 2:4) and I3(1; 2:4). The solution with I1 converges to the �xed

equilibrium Po and the solutions with I2 and I3 seem to converge to a bounded attractor, rather than

Po. Fig.12 shows the case when � = �2:0 and the �xed equilibrium Po is unstable. The corresponding

attractor seems more complicated.

Fig.13 and Fig.14 show the case when  > 1. It seems that the system has a strange attractor

when  > 1. It may have di�erent shape for di�erent �.

The above numerical simulations suggest that, for the system (26), the market generates more

complicated dynamics. In particular, when  > 1, the model may have chaotic behaviour. The
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Figure 15: Bifurcation diagram

bifurcation plot of Q as a function of � is shown in Fig.15, which indicates the complicated dynamics

of the system. Those simulations imply that the general behaviour of models built along this line is

very di�erent from what we have seen in the previous sections (certainly quite a di�erent picture to

the one suggested by Boussard [2]).

A Proof of Theorem 23.1

To give the proof of Theorem 23.1, we need introduce concepts of the inners of a matrix and the

positive innerwise matrix, which can be found from the book by Elaydi [3] (pages 180{181).

Let B = (bij)n�n be a matrix. The inners of the matrix B are the matrix itself and all the matrices

obtained by omitting successively the �rst and last rows and the �rst and last columns. A matrix B

is said to be positive innerwise if the determinants of all its inners are positive.

We now consider the kth order scalar equation

xn+k + p1xn+k�1 + p2xn+k�2 + � � �+ pkxn = 0; (27)

where the pi's are real numbers. Obviously, the characteristic equation of the equation (27) is given

by

p(�) = �k + p1�
k�1 + � � �+ pk: (28)

The Schue-Cohn criterion de�nes the conditions for the characteristic roots of equation (28) to fall

inside the unit circle. More precisely, the following Jury's test will be used in our proof to Theorem

23.1.

Theorem 23.3 The zeros of the characteristic polynomial (28) lie inside the unit circle if and only

if the following hold:

� p(1) > 0

� (�1)kp(�1) > 0,

� the (k � 1)� (k � 1) matrices

B�k�1 =

0BBBBB@
1 0 � � � 0 0

p1 1 � � � 0 0
...

...
. . .

... 0

pk�3 pk�4 � � � 1 0

pk�2 pk�3 � � � p1 1

1CCCCCA�
0BBBBB@

0 0 � � � 0 pk
0 0 � � � pk pk�1

...
...

. . .
...

...

0 pk � � � p4 p3
pk pk�1 � � � p3 p2

1CCCCCA
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are positive innerwise.

Now let us prove Theorem 23.1. What we need to show is that all the zeros of the characteristic

polynomial DL(�) de�ned by (11) lie inside of the unit circle if and only if  < 1 , that is, DL(�)

satis�es the three conditions in Theorem 23.3 if and only if  < 1.

From  > 0,it is easy to see that DL(1) = 1+ (L� 1) > 0 and (�1)LDL(�1) = 1�  if L is odd

and (�1)LDL(�1) = 1 if L is even. Hence the �rst two conditions of Theorem 23.3 hold if and only

if  < 1. To show the third condition is satis�ed, it is enough to show that, for k = 1; 2; � � � ; L � 1,

the matrix B�k with p1 = p2 = � � � = pL =  are positive if and only if  < 1.
Let k = 2m be even. Then we have

B
+

k =

0
BBBBBBBBBBBBBBBBB@

1 0 � � � 0 0 0 0 � � � 0 

 1 � � � 0 0 0 0 � � �  

...
...

. . .
...

...
...

... :
. .

...
...

  � � � 1 0 0  � � �  

  � � �  1   � � �  

  � � �  2 1 +   � � �  

  � � � 2 2 2 1 +  � � �  

...
... :

. .
...

...
...

...
. . .

...
...

 2 � � � 2 2 2 2 � � � 1 +  

2 2 � � � 2 2 2 2 � � � 2 1 + 

1
CCCCCCCCCCCCCCCCCA

(29)

To evaluate the determinate of B+
k , we use (�1) to multiply the i-th columns and add to the 2m�(i�1)-

th columns, respectively, for i = 1; � � � ;m. We then have

jB
+

k j =

�����������������������

1 0 � � � 0 0 0 0 � � � 0  � 1
 1 � � � 0 0 0 0 � � �  � 1 0
...

...
. . .

...
...

...
... :

. .
...

...
  � � � 1 0 0  � 1 � � � 0 0

  � � �  1  � 1 0 � � � 0 0
  � � �  2 1�  0 � � � 0 0
  � � � 2 2 0 1�  � � � 0 0
...

... :
. .

...
...

...
...

. . .
...

...
 2 � � � 2 2 0 0 � � � 1�  0

2 2 � � � 2 2 0 0 � � � 0 1� 

�����������������������

= (1� )m

�����������������������

1 0 � � � 0 0 0 0 � � � 0 �1
 1 � � � 0 0 0 0 � � � �1 0
...

...
. . .

...
...

...
... :

. .
...

...
  � � � 1 0 0 �1 � � � 0 0
  � � �  1 �1 0 � � � 0 0

  � � �  2 1 0 � � � 0 0
  � � � 2 2 0 1 � � � 0 0
...

... :
. .

...
...

...
...

. . .
...

...
 2 � � � 2 2 0 0 � � � 1 0
2 2 � � � 2 2 0 0 � � � 0 1

�����������������������

(30)

Now for i = 1; 2; � � � ;m, we �rst add the 2m� (i� 1)-the columns to the i-the columns, respectively.

Then, multiply  to the 2m � (i � 1)-th column and add to the all the �rst m � 1 columns. as a

result, the upper left block matrix become a zero matrix and the down left block matrix has 2 as

non-diagonal elements and 2 + 1 as diagonal elements. Correspondingly,

jB+
k j = (�1)m(1� )m

�������
2 � � � 2 + 1
... :.

. ...

2 + 1 � � � 2

������� (31)
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We use �1 to time the �rst column and add to all the rest columns. Then, use �1 to multiply the

columns 2 to k and add them to the �rst column. As as result, we have a low triangle matrix with

(1; 1; � � � ; 1; 2m + 1). Therefore,

det(B+
k ) = (1� )m(L + 1): (32)

Similarly,

B
�

k =

0
BBBBBBBBBBBBBBBBB@

1 0 � � � 0 0 0 0 � � � 0 �

 1 � � � 0 0 0 0 � � � � �

...
...

. . .
...

...
...

... :
. .

...
...

  � � � 1 0 0 � � � � � �

  � � �  1 � � � � � � �

  � � �  0 1�  � � � � � �

  � � � 0 0 0 1�  � � � � �

...
... :

. .
...

...
...

...
. . .

...
...

 0 � � � 0 0 0 0 � � � 1�  �

0 0 � � � 0 0 0 0 � � � 0 1� 

1
CCCCCCCCCCCCCCCCCA

(33)

To �nd the det(B�k ), we expand it �rst by the last row and then by the �rst row and these lead

to det(B�k ) = (1 � ) det(B�k�2). Since k = 2m, it follows from the formula det(B�2m) = (1 �
) det(B�

2(m�1)
) that

det(B�k ) = (1� )m: (34)

In conclusion, we have for k = 2m,

det(B+
k ) = (1� )m(n + 1); det(B�k ) = (1� )m: (35)

Next we assume that k = 2m+ 1. Then

B
�

k =

0
BBBBBBBBBBB@

1 � � � 0 0 0 � � � �

...
. . .

...
...

... :
. .

...
 � � � 1 0 � � � � �

 � � �  1�  � � � � �

 � � � 0 0 1�  � � � �

... :
. .

...
...

...
. . .

...

0 � � � 0 0 0 � � � 1� 

1
CCCCCCCCCCCA

(36)

It is easy to see that det(B�k ) = (1� ) det(B�2m). Using (35), we have

det(B�k ) = (1� )m+1: (37)

On the other hand,

B
+

k =

0
BBBBBBBBBBB@

1 � � � 0 0 0 � � � 

...
. . .

...
...

... :
. .

...
 � � � 1 0  � � � 

 � � �  1 +   � � � 

 � � � 2 2 1 +  � � � 

... :
. .

...
...

...
. . .

...

2 � � � 2 2 2 � � � 1 + 

1
CCCCCCCCCCCA

(38)
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To �nd the det(B�k ), we multiply the i-th column by �1 and add to the 2m � (i � 1)-the column,
respectively, for i = 1; � � � ;m.

det(B+

k ) = (1� )m

�����������������

1 � � � 0 0 0 � � � �1
...

. . .
...

...
... :

. .
...

 � � � 1 0 �1 � � � 0

 � � �  1 +  0 � � � 0
 � � � 2 2 1 � � � 0
... :

. .
...

...
...

. . .
...

2 � � � 2 2 0 � � � 1

�����������������

: (39)

Similarly, one can use row operations to reduce the upper left m �m matrix to a zero matrix and

correspondingly,

det(B+

k ) = (�1)m+1(1� )m

���������

 � � �  1 + 

2 � � � 2 + 1 2
... :

. .
...

...
2 + 1 � � � 2 2

���������
: (40)

Multiply the �rst column by �1 and add all the rest of the columns of det(B�k ) and then, multiply
the last column by � and add to the �rst column, multiply �2 to the columns 2; 3; � � � ;m and add
to the �rst column. We then add up with

det(B+

k ) = (�1)m+1(1� )m

�������

0 0 � � � 1
...

... :
. .

...
(2m+ 1) + 1 �1 � � � �1

�������
: (41)

Therefore

det(B+
k ) = (k + 1)(1� )m: (42)

Then from (37) and (42), for k = 2m+ 1,

det(B+
k ) = (k + 1)(1� )m; det(B�k ) = (1� )m+1: (43)

Finally, it follows from (35) and (43) that B�k are positive if and only if  < 1 and this completes

the proof.
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Abstract

This paper examines interactions between the economy and the environment using the Won-

derland model. Speci�cally we examine the issue of sustainable and non-sustainable development.
We address this by adapting the original model to examine a wider range of possible scenarios.
The paper also extends the model to include environmental taxes and exogenous shocks. We

present the model using visual simulation tools.

1 Introduction

In this paper we look at the Wonderland model by [5] which aims to portray interactions between the

economic, demographic and environmental systems. The model is a low-order model with particular

emphasis on economic growth and the stock of natural capital. Our aim is to extend the model by

considering how development paths of the economy and the environment are a�ected by environmental

taxes. Importantly we also expand the model to include stochastic disturbances.

The model as developed by [5] is a discrete time model. The fast-slow dynamics of the model have

been investigated in a continuous time formulation by [6] and by [2].

In further research, [7] use the sophisticated visualisation software AVS (by Advanced Visual

Systems) to examine the dynamical behaviour of Wonderland. In this paper, we simulate and visualise

these dynamics using the more accessible software Matlab (by Mathworks).

2 The Model

2.1 Basic Model

Wonderland is a model of possible interactions between the economy, demographic change and the

environment. The model enables one to observe whether particular development paths are sustainable

or not. A development path is considered to be unsustainable, following the World Commission on

Environment and Development [1], if higher standards of living in the current generation are obtained

at the expense of future generations or lower current generation death rates means higher death rates

in future generations. The equations of the Wonderland model can be grouped into four sections;

economy, population, environment and environmental policy. We shall deal with each of these sections

in turn. All variables are described in Table 1 and the parameters are set out in Table 2.

Economy

Yt+1 = Yt
�
1 +  � ( + �)(1�Kt)

�
�

(1)

It = Yt � Ct (2)

Equation 1 de�nes the economy's per capita output, Y , to grow exponentially, depending on its

own previous level and the stock of natural capital, K. The value of natural capital can vary between
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Variable Description

Y per capita output

I net per capita output

B the crude birth rate

D the crude death rate

N the population

F the ow of pollutants

K the natural capital stock

C the pollution control expenditure

P the quantity of pollution

Table 1: Model Variables

the values 0 and 1. If the stock value is 1 then all natural resources are undiminished by pollution. If

the environment is totally polluted then it takes the value 0. The lower the stock of natural capital the

lower the rate of per capita growth. The second equation in the economic section, Equation 2, states

that net per capita output, I , is the di�erence between per capita output and per capita expenditures

on pollution control, C.

Population

Bt = �0

�
�1 �

�
e�It

1 + e�It

��
(3)

Dt = �0

�
�1 �

�
e�It

1 + e�It

�� �
1 + �2(1�Kt)

�
�

(4)

Nt+1 = Nt

�
1 +

�
Bt �Dt

1000

��
(5)

Population growth is represented by Equations 3 to 5. Growth in population, N , is measured as

the di�erence between the crude birth rate, B, and death rate, D. Increases in net per capita output

lead to decreases in the birth and death rates. The death rate is also inuenced by the stock of natural

capital, whereby decreases in the stock cause the death rate to rise.

One of the characteristics of this model of the population is that if the stock of natural capital is

complete (K = 1), then for a constant level of economic output, the population will grow exponentially.

Further, in this situation, in the extreme case when the economy completely collapses (Y = 0), then

the population will still grow given the parameters in Table 2.

Environment

Ft = NtYtPt � �
�

e�CtNt

1 + e�CtNt

�
(6)

Kt+1 =
e
ln( Kt

1�Kt
)+�K�

t �!Ft

1 + e
ln( Kt

1�Kt
)+�K�

t�!Ft
(7)

Ct = �(1�Kt)
�Yt (8)

Pt+1 = �Pt (9)

The environment is modelled by four equations. The �rst, Equation 6, describes the annual ow of

pollutants, F . These are determined by the population, per capita output, per unit pollution and the
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Parameter Value Section

 0.04 Economy

� 0.04 Economy

� 2 Economy

� 0.09 Population

�0 10 Population

�1 2.5 Population

�2 2 Population

� 0.08 Population

�0 40 Population

�1 1.375 Population

� 15 Population

� 1 Environment

� 1 Environment

� 0.02 Environment

� 0.2 Environment

! 0.1 Environment

� 0.5 Environment

� 2 Environment

� 0.96 Environment

Table 2: Model Parameters (for Dream Scenario)

amount spent on pollution control measures. The ow also depends on the e�ectiveness of pollution

control measures denoted by the parameter �.

Equation 7 speci�es the interaction between the ow of pollution and the stock of natural capital.

Obviously, natural capital is adversely a�ected by a higher pollution ow. However, the equation

allows for natural capital to regenerate itself and o�set the pollution ow of earlier periods.

The technologies of pollution production and control, P , are modelled by Equation 9. It is assumed

that the technologies of pollution reduction is constantly improving over time at some prescribed rate

�, which reduces the pollution per unit. The equation shows exponential decay, when � < 1, in

pollution per unit of production.

Pollution control expenditure, C, is related to two variables. Firstly, deterioration in the state of

the environment, reected in the stock of natural capital and not the current level of pollution ow,

will cause increased expenditure. Secondly, an increase the level of per capita output leads to greater

expenditure on control measures. The parameters � and � are important factors in determining the

development path of the environment.

2.2 Model with Taxation

Suppose environmental taxes are introduced in Wonderland with the aim of reducing pollution. It is

assumed that these taxes have the e�ect of reducing pollution per unit output, so that Equation 9,

becomes

Pt+1 = (1� �)�Pt (10)

where � is the rate of environmental taxes.

The environmental taxes would also be expected to have the e�ect of reducing economic output,

so that Equation 1 becomes

Yt+1 = Yt

�
1 +  � ( + �)(1�Kt)

� � 0�

1� �
�

(11)
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Visualisation
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Random
Shocks

Clock

Figure 1: Overall Simulation Environment for Wonderland

It has been assumed that the e�ect of taxes on output is a scale factor (0 = 0:05) less than on the

rate of pollution output as investment by �rms in pollution technology has a greater positive e�ect

on pollution output than its negative e�ect on economic output. In addition, some of the `green'

technologies may be economically bene�cial.

Modelling environmental taxes in Wonderland in this manner has a double e�ect on the ow of

pollutants. This is because the taxes have the e�ect of reducing Y which reduces F . The taxes will also

reduce F through the reduction in P . Thus the ow of pollutants is reduced through the decrease in

economic output and the decrease in pollution per unit output. Reducing the ow of pollutants allows

the stock of natural capital to regenerate. Thus such taxes have a powerful e�ect in Wonderland.

2.3 Economic and Environmental Disturbances

So far the model has been considered deterministic, it would be more realistic to consider the implica-

tions of stochastic disturbances to the economy and to pollution control technology. This is modelled

by the introduction of independent white Gaussian noise to Equations 10 and 11.

2.4 State Form

The entire model can be represented in state form as

xt+1 = f(xt;ut;p) +H"t (12)

where x is the vector of states ([Y;N;K; P ]T ), and u is the vector of controls (which in this case is

the parameter �). Further, " is the vector of white Gaussian noise, and H is the 4 � 4 matrix with

the value 1 in the �rst and last elements of the leading diagonal and zeros elsewhere.

3 Visual Simulation of the Model

For the solution of the model the Simulink software was used [4]. This software has the advantage

that simulation of the model can be undertaken in a convenient interactive environment. It also has

the advantage that the ow of data and objects that make up the simulation can be visualised.

Figure 1 shows the overall simulation framework for the model and captures the state space form

of Equation 12. The objects in the simulation show a step in taxation and random shocks as inputs;
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Wonderland
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Output

Population

Pollution
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Pol Exp

Environment

Tax

Capital

Shock

Output

Economy

2

Shocks

1

Tax

Figure 2: The Sectors of Wonderland

and the transfer of the output to a visualisation object. The simulation accepts easy modi�cation of

the tax rate, and variance of the shocks1.

Figure 2 shows the sections of the model. The ow of data between the equations of the model can

be traced in the Figure. Figures 3 through to 6 illustrate the objects and data ows in the sections of

the model.

4 The Basic Model Scenarios

Following [5], for all scenarios, initially the economy, Y , and the population, N , and the pollution

production technology are all at unity. The stock of natural capital, K, is at 0.98 giving a near

complete stock. From this initial state position (x0 = [1; 1; 0:98; 1]T ), the states trajectories evolve

over time. A long time horizon is used to show the e�ects upon future generations.

Depending upon certain parameter values the states of the model evolve di�erently generating a

variety of scenarios. In this paper we consider the four scenarios shown in Figures 7 to 11, where each

Figure presents a di�erent state variable. The di�erent scenarios are generated by di�ering values

of �, which determines the decrease in pollution per unit output over time; �, which determines

the e�ectiveness of pollution control; and !, which determines the impact of pollution ow on the

regeneration of natural capital.

1More details of the capabilities of this software environment in economic models can be found in [3]
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The Economy
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Figure 3: The Economy

4.1 Dream

The Dream scenario is the best situation for the inhabitants of Wonderland. The economy grows

continually, the environment returns to and remains in a perfect condition, and the population grows

and then stabilises. Under this scenario, there is a future of environmentally sustainable prosperity,

all appears well in Wonderland.

This scenario uses the parameters in Table 2. Importantly, the rate of pollution per unit of output

(�) is set to fall by 4% per year. Under this sustainable scenario, both per capita output and net per

capita output grow exponentially and natural capital remains undiminished.

The rapid recuperation of the stock of natural capital in this scenario is shown in Figures 9

and 11. The dynamics of natural capital are much faster than other states. The division of the

fast-slow dynamical behaviour of the model is considered in detail in [7].

4.2 Horror

Under the Horror scenario, sustainable prosperity gives way to a catastrophic collapse of the economy,

population and environment.

The only di�erence between this and the previous scenario is that � is set such that rate of

pollution per unit output falls by 1% per year. The results for Wonderland are tumultuous. Output

and net output crash after a period of growth and this coincides with a complete collapse of the

level of natural capital. This brings about a sharp rise in the death rate and the population begins

to shrink. Clearly, this path is unsustainable. Earlier generations were living beyond their means

both in terms of standard of living and their care for the environment. What is interesting is the

abrupt change in the time path of events. For a long time the environment is able to assimilate the

growth in the pollution ow, given the technology of pollution production and the amounts spent on

pollution control. However, the continued growth of the economy and pollution ows overwhelm the

environment's ability to cope. Moreover, continued economic and population growth have brought

about a collapse rather than gradual decline. Thus, even with a constant rate of decrease in pollution

per unit of output, a horror scenario occurs.

4.3 Escape 1

This scenario varies from the Horror scenario through the e�ectiveness of the economy's pollution

control measures. A hundredfold increase in the parameter � (� = 100) reverses the fall in output

through the expenditure control measures. However, this is not enough to halt a brief collapse in the
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stock of environmental capital, but it does rebound back quickly. This scenario then repeats itself.

These periodic shocks to the environment produce a staggered decline in population growth and cycles

in per capita output growth.

4.4 Escape 2

This is the same as Horror scenario except that !, the impact of the rate of ow of pollution on natural

capital has increased. Interestingly, this scenario shows the resilience of natural capital regeneration

even with longer periods of environmental collapse.

4.5 Wonderland Phase Portrait

The view of the dynamics of Wonderland can be seen by considering the phase portrait in Figure 11.

The Figure considers the three states of economy, population and natural capital. The fourth state,

pollution per unit output, is simply an exponential decay.

The �rst quadrant of the Figure shows the Dream scenario, with the dynamics of natural capital,

and population quickly attaining their steady state, and the economy continually growing. In the

Horror scenario (second quadrant), all appears well until the crash as all the states descend to the

origin. In the �rst Escape scenario, the phase portrait shows loops as the environment depletes and

regenerates, the population stabilises between falls, and the economy grows and crashes. In the second

Escape scenario, Wonderland shifts between horror and dream scenarios.

An important implication for Wonderland is that there is only minor parameter value changes

between the scenarios. The di�erence between the Dream and Horror is simply the rate at which

pollution per unit of output decays over time. If technological improvements are such that the rate at

which pollution per unit output of is 4% per year, then sustainable prosperity occurs in Wonderland.

On the other hand, if this rate is 1% per year, then there are troubles in Wonderland.
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5 Environmental Taxes

If Wonderland is in trouble (Horror scenario) then an interesting question that arises is: `what use

can be made of environmental taxes to avoid the Horror scenario?' Given the structure of the model,

one approach is to introduce taxes that penalise �rms for their pollution per unit of production. This

should result in pollution per unit output falling, but may also have e�ects on economic output as �rms

transfer their resources into these technologies. The form in which these taxes have been introduced

into the model was presented in Section 2.2 above.

Figure 12 presents the phase portrait for Wonderland under di�ering tax rates. In all cases, the

Horror scenario is the starting point.

The �rst quadrant shows a low tax rate. Under this tax regime the Horror scenario remains, with

the economy, environment and population building up to the sudden catastrophic crash. But with

higher tax rates, as shown in quadrants two and three, the Horror scenario is transformed into a dream

scenario.

The fourth quadrant illustrates what happens in Wonderland if the tax rate is further increased.

In this case, the stock of natural capital is, as in the other cases (� = 0:25 and � = 0:33), complete,

but the economy collapses. However the population increases. Through visual simulation it was

established that a tax rate greater than 0.444 produced an economic collapse. The lower bound tax

threshold which turns the Horror scenario to the Dream scenario is 0.02.

The tax structure used favours low taxes as the dislocation e�ect on output rapidly increases with

rising taxes. Low taxes are enough to improve pollution ow and enable the stock of natural capital

to regenerate, resulting in the Dream scenario.

Another question that may be considered is: `how does this tax structure respond when the model
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is subjected to external disturbances?'.

6 External Disturbances

The introduction of external shocks into the model is described above in Section 2.3. The issue of

concern is whether these shocks on the model mean that it is no longer possible for the tax structure

to generate the dream scenario.

Starting with the parameters of the Horror scenario, Figure 13 illustrates the e�ects of these

disturbances on per capita economic output (Y ). The Figure plots the evolution of the economy over

time to illustrate the continual nature nature of the shocks. These results are produced using zero

means and a �xed variance of 0.001 for the pollution ow shock, and variances of 0.01 (the upper

graph) and 0.1 (the lower graph) for the output shock. For these simulations a tax rate of 0.25 was

used. It can be seen from the graphs that, within the time horizon, the characteristic dream pattern

for output is maintained with the lower variance but not with the higher variance. In simulations

with a zero tax rate, the Horror scenario occurs with the disturbance pattern under either variance.

7 Conclusion

This paper examined the issue of sustainable development using the Wonderland model. A character-

istic of this model is that seemingly sustainable development becomes unsustainable. Consequently,

we considered whether the introduction of an environmental tax could avert this situation. It was

shown that this could be achieved. For a variety of tax rates the change to unsustainable development

could be avoided. The structure of the tax is being considered in further work.
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Abstract

Our game in this paper is a non-cooperative repeated game where many players compete with
one another at several markets. At each iteration of our game, each player is supposed to choose a
single market for maximizing his own pro�t obtained by selling his product at the selected market.

It is assumed in our market selection game that the market price of the product is determined by
the demand-supply relation at each market. For example, if many players bring their products to
a particular market, the market price at that market becomes low. On the contrary, the market

price is high if the total amount of products brought to the market is small. In this manner,
the market price at each market is determined by the actions of all players. This means that
the pro�t of each player depends on the actions of the other players. The main aim of this pa-

per is to numerically analyze the competition between several strategies for our market selection
game. We examine six strategies: a random selection strategy, a minimum transportation cost
strategy, an optimal strategy for the previous actions, a mimic strategy of the nearest neighbor

player, a Q-learning-based strategy, and a fuzzy Q-learning-based strategy. The performance of
each strategy is examined by computer simulations with 100 players and �ve markets. First we
examine the performance of each strategy by assuming that all the players use the same strategy.

Next we examine the competition between two strategies, each of which are used by half of the
players. Then we examine the competition between two strategies further by changing the number
of players adopting each strategy. Finally we perform computer simulations of the competition

between various strategies where the number of players adopting each strategy is increased or
decreased according to the performance of the strategy.

1 Introduction

Strategies for repeated games have been mainly studied for the IPD (Iterated Prisoner's Dilemma)

game. Axelrod [1] discusses many strategies based on the results of two computer tournaments for

the IPD game. The evolution of strategies for the IPD game was studied in Axelrod [2], Lindgren

[3], and Fogel [4]. In those studies, each player played the IPD game against all players in a current

population. Nowak et al. [5] and Lloyd [6] examined a spatial version of the IPD game where a

number of players were spatially �xed in a grid-world and they played the IPD game against only

their neighboring players. While those studies on the IPD game involved many players with various

strategies, the Prisoner's Dilemma game itself is very simple. That is, only two players repeatedly

play the game against each other based on a simple 2� 2 payo� matrix.

Our market selection game [7] involves much more players (e.g., 100 players) and a more compli-

cated payo� mechanism than the IPD game. At each iteration of our game, each player is supposed to

choose a single market from several ones (e.g., �ve markets) to sell his product at the market price of

the selected market. The aim of the market selection is to maximize his own pro�t obtained by selling

his product at the selected market. It is assumed in our game that the market price is determined by

the demand-supply relation at each market. This means that the pro�t of a particular player depends

on the actions of the other players. In this paper, we examine six strategies for our market selection

game: a random selection strategy, a minimum transportation cost strategy, an optimal strategy for

the previous actions, a mimic strategy of the nearest neighbor player, a Q-learning-based strategy,

and a fuzzy Q-learning-based strategy. For examining the performance of each strategy by computer

simulations, we set up an instance of our market selection game as shown in Fig. 1 where 100 players

and �ve markets are randomly located. Our computer simulations in this paper are performed for the

market selection game in Fig. 1.
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Figure 2: Illustration of the action of each player.

2 Formulation of a Market Selection Game

We denote the number of players by n (n = 100 in Fig. 1). Each player is indexed by i where

i = 1; 2; � � � ; n. The number of markets is denoted by m (m = 5 in Fig. 1). Each market is indexed

by j where j = 1; 2; � � � ;m. Our market selection game is iterated as the IPD game. Let us denote

the total number of iterations by T . Each iteration is indexed by t (i.e., t = 1; 2; � � � ; T ). We assume

that each player has a single product to be sold at each iteration. The action of each player at each

iteration is to select a single market where his product is sold. Let us denote the action of the i-th

player at the t-th iteration of our game by xtij where j = 1; 2; � � � ;m; t = 1; 2; � � � ; T ; and

xtij =

�
1; if the i-th player chooses the j-th market;

0; otherwise:
(1)

Because each player is supposed to choose a single market from the given m markets for selling his

product, the following relation holds:

mX
j=1

xtij = 1; for i = 1; 2; � � � ; n; t = 1; 2; � � � ; T: (2)

We assume that all the players simultaneously perform the market selection at each iteration of our

game. Thus no player knows the current actions of the other players when he chooses a market. This

means that no player knows the optimal market selection for the current iteration of the game. In

Fig. 2, we illustrate an example of the market selection by 100 players, each of which selects a single

market from the given �ve markets.

We assume that the market price of the product is determined by the demand-supply relation at

each market. For example, if many players bring their products to a particular market, the market

price at that market becomes low. On the contrary, the market price is high if the total amount of

products brought to the market is small. In this manner, the market price at each market is determined

by the actions of all players. The total amount of products that are sold in the j-th market at the

t-th iteration is calculated from (1) as follows:

Xt
j =

nX
i=1

xtij ; for j = 1; 2; � � � ;m; t = 1; 2; � � � ; T: (3)
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We assume that the market price of the j-th market at the t-th iteration is determined by the following

linear demand-supply relation:

ptj = aj � bj �Xt
j ; for j = 1; 2; � � � ;m; t = 1; 2; � � � ; T; (4)

where aj and bj are positive constants that specify the demand-supply relation of the j-th market. In

computer simulations of this paper, we use the same demand-supply relation for all the �ve markets:

ptj = 100� 3 �Xt
j ; for j = 1; 2; � � � ; 5; t = 1; 2; � � � ; T: (5)

It is assumed that the cost cij for the transportation of the product from the i-th player to the

j-th market depends on the distance between the player and the market. Let us denote the distance

between the i-th player and the j-th market by dij . We assume that the transportation cost cij is

given as follows:

cij = c � dij ; for i = 1; 2; � � � ; n; j = 1; 2; � � � ;m; (6)

where c is the transportation cost for the unit distance. In computer simulations, we speci�ed the

value of c as c = 1. Thus the transportation cost cij was speci�ed as cij = dij . The introduction of the

transportation cost makes the players di�erent from each other because they are randomly placed in

the [0; 100]� [0; 100] space. That is, some players located close to markets can easily enjoy high pro�ts
with small transportation costs while other players with no markets in their neighborhood su�er from

high transportation costs.

Let us denote the pro�t (i.e., reward) of the i-th player at the t-th iteration by rti . We de�ne the

pro�t rti as follows when the i-th player chooses the j-th market for selling his product (i.e., when

xtij = 1):

rti = ptj � cij ; for i = 1; 2; � � � ; n; t = 1; 2; � � � ; T: (7)

It should be noted that the pro�t rti of the i-th player depends on the actions of the other players

through the market price ptj (see (3) and (4)). The aim of each player in our game is to maximize the

total pro�t ri over T iterations:

ri =

TX
t=1

rti ; for i = 1; 2; � � � ; n: (8)

3 Various Game Strategies

In this paper, we examine the performance of six strategies for our market selection game: a random

selection strategy, a minimum transportation cost strategy, an optimal strategy for the previous

actions, a mimic strategy of the nearest neighbor player, a Q-learning-based strategy, and a fuzzy

Q-learning-based strategy. Each strategy is explained in the following subsections.

3.1 Random Strategy

The simplest strategy for our market selection game is a random strategy. The random strategy can

be implemented by specifying the market selection probability Pr(xtij = 1) as

Pr(xtij = 1) = 1=m; for i = 1; 2; � � � ; n; j = 1; 2; � � � ;m; t = 1; 2; � � � ; T: (9)

That is, each of the m markets is randomly selected with the same probability.

3.2 Minimum Transportation Cost Strategy

Another simple strategy is to minimize the transportation cost. That is, each player chooses the nearest

market with the minimum transportation cost. This strategy, which is referred to as a minimum

transportation cost strategy, is very e�ective when the transportation cost c for the unit distance is

large.
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3.3 Optimal Strategy for Previous Actions

Since each player simultaneously performs the market selection at each iteration of our game, no

player knows the current actions of the other players when he chooses a market. This means that no

player can perform the optimal market selection for the current iteration of the game. Each player,

however, can calculate the optimal market for the previous actions of the other players. That is, a

player can select a market by assuming that the other players choose exactly the same markets as in

the previous iteration. This strategy is referred to as an optimal strategy for the previous actions.

Of course, the optimal strategy for the previous actions is not always optimal for the current actions

because the underlying assumption is not always valid. At the �rst iteration of our game, each player

adopting this strategy chooses the nearest market with the minimum transportation cost. The next

action of each player is chosen based on the previous actions of the other players.

3.4 Mimic Strategy of Nearest Neighbor Player

The optimal strategy for the previous actions requires the information about the demand-supply

relations of all the m markets (i.e., aj and bj for all the m markets) and the actions of the other

players at the previous iteration of the game. When such information is not available, we need

simpler strategies that do not require a lot of information. One of such simple strategies is a mimic

strategy of the nearest neighbor player where a player simply mimics the previous action of the nearest

neighbor player. A player adopting this strategy randomly chooses a market at the �rst iteration of

the game. The next action of the player is the same as the previous action of his nearest neighbor

player.

3.5 Q-Learning-based Strategy

The four strategies described in Subsections 3:1 � 3:4 do not use any information about the pro�t

obtained from each market during the previous iterations. In order to choose a market based on the

pro�t obtained from each market during the previous iterations, we can use Q-learning [8], which is

a well-known reinforcement learning scheme. In a Q-learning-based strategy, each player stores and

updates a Q-value for each market during the execution of our repeated game (for detail, see [7]).

Let Qt
ij be the Q-value of the i-th player for the j-th market at the t-th iteration of our game. The

Q-value for the selected market is modi�ed after the t-th iteration as

Qt+1
ij =

�
(1� �) �Qt

ij + � � rti ; if xtij = 1;

Qt
ij ; otherwise;

(10)

where � is a positive learning rate. In our computer simulations, � was speci�ed as � = 0:9. The

initial value of each Q-value was speci�ed as Q1
ij = 100.

The market selection is performed based on the Q-value for each market. The selection probability

Pr(xtij = 1) of each market is de�ned by the roulette wheel selection with the linear scaling as follows:

Pr(xtij = 1) =
Qt
ij �minfQt

ig
mX
k=1

�
Qt
ik �minfQt

ig
	 ; (11)

where minfQt
ig = minfQt

ij j j = 1; 2; � � � ;mg. In our computer simulations, this roulette wheel

selection was used for the �rst 100 iterations of our game. After the 100 iterations, the market with

the maximum Q-value (i.e., maxfQt
ij j j = 1; 2; � � � ;mg) was always selected at each iteration of our

game.
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3.6 Fuzzy Q-Learning-based Strategy

For handling continuous states and/or actions, Q-learning was extended to fuzzy Q-learning [9, 10].

In our market selection problem, the market price at each market in the previous iteration can be

used as a continuous state (see [7]). That is, the estimation of the expected payo� from each market

(i.e., the Q-value for each market) is conditioned by the market prices of all markets in the previous

iteration. In our computer simulations, the market price of each market was partitioned into two

linguistic values \low" and \high" in Fig. 3. These two linguistic values were used as antecedent fuzzy

sets of fuzzy if-then rules of the following type:

Rule Rs : If pt�1
1 is As1 and � � � and pt�1

m is Asm
then Qt

i1 = qtsi1 and � � � and Qt
im = qtsim;

s = 1; 2; � � � ; N;
(12)

where Rs is the label of the s-th fuzzy if-then rule, s is a rule index, p
t�1
j is the market price of the j-th

market at the previous iteration, Asj is an antecedent fuzzy set, Qt
ij is a Q-value, q

t
sij is a consequent

real number, and N is the number of fuzzy if-then rules. When we have two linguistic values (\low"

and \high") as antecedent fuzzy sets for each market price of the m markets, the number of fuzzy

if-then rules for each player is N = 2m. In our computer simulations with �ve markets (i.e., m = 5),

the number of fuzzy if-then rules for each player is N = 25 = 32. The Q-value of each player for each

market is calculated by a fuzzy reasoning method from the fuzzy if-then rules in (12). Let us de�ne

the compatibility grade of the previous market prices pt�1 = (pt�1
1 ; pt�1

2 ; � � � ; pt�1
m ) with the fuzzy

if-then rule Rs by the product operator as

�s(p
t�1) = As1(p

t�1
1 )� : : :�Asm(pt�1

m ); (13)

where Asj(�) is the membership function of the antecedent fuzzy set Asj . The Q-value of the i-th

player for the j-th market at the t-th iteration is calculated as follows:

Qt
ij =

NX
s=1

�s(p
t�1) � qtsij

NX
s=1

�s(p
t�1)

; for i = 1; 2; � � � ; n; j = 1; 2; � � � ;m; t = 1; 2; � � � ; T: (14)

The consequent qtsij of each fuzzy if-then rule is adjusted in the same manner as in the Q-learning:

qt+1
sij =

� f1� � � ��s(pt�1)g � qtsij + � � ��s(pt�1) � rti ; if xtij = 1;

qtsij ; otherwise;
(15)



Hisao Ishibuchi, Chi-Hyon Oh and Tomoharu Nakashima 277

Table 1: Average pro�t by each strategy when all the players use the same strategy.

Strategy Average Pro�t

Random selection strategy �16:7
Minimum transportation cost strategy 3.7

Optimal strategy for the previous actions �57:5
Mimic strategy of the nearest neighbor player �20:5
Q-learning-based strategy 11.8

Fuzzy Q-learning-based strategy 9.8

where

��s(p
t�1) =

�s(p
t�1)

NX
s=1

�s(p
t�1)

: (16)

The market selection based on the calculated Q-values in (14) is performed in the same manner as in

the Q-learning.

4 Computer Simulations

In this section, we examine the performance of each strategy and analyze the competition between

various strategies by computer simulations on the market selection game in Fig. 1.

4.1 Performance of Each Strategy

In this subsection, we assume that all the players use the same strategy. In computer simulations,

we applied each strategy to the market selection game in Fig. 1. Our game was repeated 1000 times

(i.e., t = 1; 2; � � � ; 1000). For calculating the average pro�t per each iteration and each player, such a

computer simulation of our repeated game was performed 100 times for each strategy because some

strategies have stochastic nature based on randomization procedures. Average pro�t obtained by each

strategy is summarized in Table 1. From this table, we can see that better results were obtained by the

Q-learning-based strategy and the fuzzy Q-leaning-based strategy. We can also see that the optimal

strategy for the previous actions was the worst among the six strategies. This can be explained as

follows. In general, this strategy chooses a market where the previous price was high. Thus many

players choose the same market. As a result, the market price becomes low. The market price will

be high again in the next round of the game because only a few players will choose that market after

the low price. In computer simulations of this paper, we often observed such a cycle of price changes,

which is illustrated in Fig. 4. If the price of a market was high (e.g., the point A in Fig. 4) in the

previous round of the game, the total amount of products would be increased and the market price

would be decreased (e.g., to the point B). The low price will decrease the total amount of products

and increase the market price in the next round of the game (e.g., to the point C). Due to such cyclic

concentration, each player could not obtain high pro�t on the average when all the players adopted

the optimal strategy for the previous actions. As we will show in Subsections 4.2 and 4.3, this is not

the case when the number of players adopting this strategy is small.
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Figure 5: Illustration of price changes.
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Figure 6: Simulation results of the competition

between the fuzzy Q-learning-based strategy and

the optimal strategy for the previous actions.

Table 2: Simulation results of the competition between two strategies.

Strategy of the other 50 players
Strategy Random Cost Optimal Mimic Q Fuzzy Q

Random �16:7 �16:9 �16:9 �16:7 �16:7 �16:7
Cost 9.8 3.7 14.8 4.6 12.7 2.8

Optimal �25:1 �21:0 �57:5 �2:1 �39:0 2.7

Mimic �17:6 �3:1 4.9 �20:5 2.1 0.2

Q 13.4 13.2 8.9 13.0 11.8 12.8

Fuzzy Q 9.8 10.4 12.6 9.9 10.1 9.8

4.2 Competition between Two Strategies

In this subsection, we examine the competition between two strategies where each strategy is adopted

by half of the players (i.e., 50 players). All combinations of two strategies were examined in the

same manner as in Subsection 4.1. That is, the competition between each pair of strategies was

examined by 100 independent trials of the repeated game with 1000 iterations. In each trial, 100

players were randomly divided into two groups of 50 players. Simulation results are summarized in

Table 2. The bold-faced entries in this table are the same as Table 1 because those entries correspond

to the situations where two strategies are the same. By focusing our attention on each row of Table

2, we can see that the average pro�t by each strategy (except for the random selection) was increased

by competing with di�erent strategies. For example, a positive average pro�t was obtained by the

optimal strategy for the previous action when it competed with the fuzzy Q-learning-based strategy.

On the other hand, by focusing our attention on each column, we can see that the fuzzy Q-learning-

based strategy could bring positive pro�ts to the other strategies except for the random selection.

As shown in Table 2, the performance of each strategy can be improved by competing with dif-

ferent strategies. By demonstrating this improvement more clearly, we performed similar computer

simulations by changing the number of players adopting each strategy. We examined the competition

between the optimal strategy for the previous actions and the fuzzy Q-learning-based strategy. The

number of players adopting the fuzzy Q-learning-based strategy was speci�ed as 1; 10; 20; � � � ; 99. For
each speci�cation, average pro�t of each strategy was calculated in the same manner as in the above

computer simulations. Simulation results are summarized in Fig. 5. From this �gure, we can see that
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Figure 7: Simulation results of the competition

between the fuzzy Q-learning-based strategy and

the mimic strategy of the nearest neighbor player.
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Table 3: Average pro�t by each strategy in the competition of the six strategies.

Strategy Average Pro�t

Random selection strategy �16:5
Minimum transportation cost strategy 13.7

Optimal strategy for the previous actions 11.2

Mimic strategy of the nearest neighbor player 5.8

Q-learning-based strategy 13.8

Fuzzy Q-learning-based strategy 9.6

the performance of each strategy was high when the number of that strategy was small. This means

that the performance of each strategy was improved by the existence of di�erent strategies. We also

examined the competition between the mimic strategy of the nearest neighbor player and the fuzzy

Q-learning-based strategy. Simulation results are summarized in Fig. 6.

4.3 Competition between Six Strategies

In this subsection, we examine the competition between the six strategies. In computer simulations,

we speci�ed the number of players adopting each strategy as follows:

Random selection strategy: 17 players,

Minimum transportation cost strategy: 17 players,

Optimal strategy for the previous actions: 17 players,

Mimic strategy of the nearest neighbor player: 17 players,

Q-learning-based strategy: 16 players,

Fuzzy Q-learning-based strategy: 16 players.

In the same manner as in the previous computer simulations, the performance of each strategy was

calculated by 100 independent trials. In each independent trial, players adopting each strategy were

randomly selected. Simulation results are summarized in Table 3. From the comparison between

Table 1 and Table 3, we can see that the performance of some strategies was signi�cantly improved

by competing with many strategies.

We also applied the concept of natural selection to our computer simulation where one player
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Table 4: Average pro�t by each strategy when all the players use the same strategy (di�erent parameter

speci�cations).

Strategy Average Pro�t

Random selection strategy �83:7
Minimum transportation cost strategy 10.6

Optimal strategy for the previous actions 12.0

Mimic strategy of the nearest neighbor player �85:5
Q-learning-based strategy 8.2

Fuzzy Q-learning-based strategy 7.8

adopting the worst strategy changed his strategy into the best strategy during the generation update.

The generation update was performed after the performance of each strategy was evaluated. That

is, the number of players adopting the best strategy was increased by the generation update while

the number of players with the worst strategy was decreased. For example, the number of Q-learning

players was increased from 16 to 17 by the �rst generation update in the case of Table 3 while

the number of random selection strategy players was decreased from 17 to 16. In this manner, we

evolved the population of 100 players in our market selection game until 200-th generation. Simulation

results are summarized in Fig. 7. Furthermore, we continued the generation update until the 1000-th

generation. The minimum transportation cost strategy, the Q-learning-based strategy and the optimal

strategy for previous actions coexisted with each other after such a large number of generation updates.

5 Conclusion

In this paper, we examined the performance of six strategies for a market selection game. Our

game is a non-cooperative repeated game with many players and a complicated payo� mechanism.

First we examined the performance of each strategy by computer simulations where all the players

employed the same strategy. Next we examined the competition between two strategies where each

of the two strategies was adopted by half of the players. For examining the competition between

two strategies further, we also performed computer simulations where the number of players adopting

each strategy was speci�ed variously. Finally we examined the competition between six strategies. We

also applied the concept of natural selection to our computer simulation for evolving the population

of 100 players in our market selection game. By the computer simulations in this paper, we showed

that the performance of each strategy was better in the competition with di�erence strategies than

the situation where all the players employed the same strategy. Since the performance of a particular

strategy adopted by a player strongly depends on the choice of strategies by the other players, it is

very di�cult to generally show which strategy works well. For example, while the optimal strategy

for the previous actions was good in the competition between the six strategies in Subsection 4.3, its

performance was the worst in Subsection 4.1 where all the players employed the same strategy. The

performance of each strategy also strongly depends on the choice of parameter values in our market

selection game. In the computer simulations of this paper, we speci�ed the demand-supply relation

and the unit transportation cost as ptj = 100� 3 �Xt
j and c = 1:0, respectively. We also examined the

performance of each strategy in the same manner as in Table 1 using di�erent parameter speci�cations:

ptj = 100 � Xt
j and c = 3:0. In this case, we had totally di�erent results as shown in Table 4. In

this table, the best average result was obtained by the optimal strategy for the previous action, which

was the worst strategy in Table 1. As we can easily see from the comparison between Table 1 and

Table 4, simulation results on our market selection game strongly depends on parameter speci�cations.

Examination of such dependency is one of future research topics on our market selection game.
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Abstract

This paper describes how a state emerges and collapses that makes it possible for citizens

to do something which they will not voluntarily. The model is the generalisation of Okada and
Sakakibara (1991): people may may voluntarily make a state, or a compulsory rule that force
themselves to construct and maintain the public capital stock. The novelty of this paper lies in
the assumption that productivity and bene�t from the stock may di�er from person to person.

This paper presents both game theoretic analysis and results of simulations, which suggest that
sel�sh but rational people may agree to make a state, which grows as the public capital stock
accumulates but collapses when the stock reaches a certain level.

1 Introduction

The tragedy of commons is a well-known example of how non-altruistic people fail to cooperate for

maintaining the public capital. We should like examine the possibility that people voluntarily make

a state or a compulsory rule that force themselves to construct and maintain the public capital stock

in the circumstances.

Our analysis is the generalisation of the analysis of Okada and Sakakibara (1991), which explains

the emergence and collapse of a state in terms of game theory on the supposition that the productivity

and the bene�t from the public capital stock are common to all players. We shall examine the same

problem in terms of game theory and computer simulations on the assumption that productivity and

bene�t from the public capital stock may di�er from person to person. We shall see how non-altruistic

people may agree to make a state, which grows as the public capital stock accumulates but collapses

when the stock reaches a certain level.

This paper is organised in the following way. In Section 2 we shall explain the basic model, which

is divided into four subgames: �rst each inhabitant announces whether he or she becomes a citizen

or an outsider; then the citizen who proposes the smallest salary is chosen to be the enforcer who

watches for tax evasion without making private business; then all citizens propose tax rates, of which

the smallest is adopted as the tax rate; last tax payers pay taxes honestly or become tax evaders,

whose income from private business will be all con�scated by the enforcer if tax evasion is found by

him or her. In Section 3 we shall present a simple case and analyse all the subgames mathematically

to �nd the subgame-perfect Nash equilibrium of the game by backward induction. In Section 4 we

shall show some results of simulations for the case analysed in the previous case. Last in Section 5 we

shall refer to the generalisation of our analysis.
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2 The model

The outline of our model is as follows. There live n inhabitants in a valley irrigated by a canal.

Inhabitants make shovels in the winter. They may exchange them for rice with foreigners living

outside the valley and/or use them up for dredging the canal to increase their harvest of rice in the

fall. The non-agricultural income of inhabitants is de�ned as the rice value of the shovels made by

them, which may di�er from person to person according to their skill, while their non-agricultural

income is their harvest of rice, which depends on the location of their private rice �eld and the

condition of the canal as the public capital.

In addition, for the sake of simplicity, let us assume the following. The condition of the canal is

represented by its depthK. De�ning a unit of shovels adequately, we assume that each additional input

of non-agricultural input deepens the canal by one inch. The non-agricultural and the agricultural

income of the ith inhabitant are i and �iK.

In the circumstances inhabitants may be faced with a di�culty in dredging the irrigation system.

Suppose that the depth of the canal is �K without being dredged. The total income of the ith inhabitant

is i + �i �K if no inhabitants use their shovels to dredge the canal, while it equals (1� ti)i + �i( �K +Pn
j=1 tjj) if the jth inhabitant contributes 100tj percent of his or her non-agricultural income to the

dredging of the canal. The latter can possibly be greater, but even then it may not automatically be

realized. Certainly those inhabitants with 1 < �j may voluntarily contribute all their non-agricultural

income to the dredging of the canal, but those with �j < 1 will contribute nothing; in terms of the

game theory tj = 1 and tj = 0 are the dominant strategies for the respective groups.

Some organization or the system of monitoring and punishment may be required for making people

contribute to the accumulation and maintenance of the public capital stock. In this paper we examine

the, following scenario or the four-stage game.

Subgame 1

Each inhabitant announces whether he or she becomes a citizen or an outsider. Accordingly the n

inhabitants in the valley: fInhabitant iji 2 N = f1; 2; : : : ; ngg are divided into m(0 � m � n) citizens:
fInhabitant iji 2 M � N; g and n �m outsiders: fInhabitant iji 2 L = N�Mg, where M [ L = N

and M \ L = ;. The citizens advance towards the following stages to determine their role or duty

as well as the penalty which may be imposed on those who do not perform it, while the outsiders

can enjoy all bene�t from the public capital without making any contribution to its accumulation or

maintenance.

Subgame 2

Every citizen announces the acceptable tax rate on non-agricultural income �i. The minimum �i is

adopted as the tax rate of the state: �� = mini2M �i. (Everyone can virtually dissolve the state by

proposing �i = 0.)

Subgame 3

Every citizen o�ers him/herself as the candidate for the enforcer who makes neither shovels nor rice

to concentrate on monitoring the other citizens, by declaring the ratio of the enforcer's salary to the

tax revenue of the state �i. The person who has proposed the minimum �i is elected as the enforcer

and has salaries paid accordingly: if mini2M �i = �e = ��, Inhabitant e is the enforcer, whose salary is

��
P

j2T j where Inhabitants i (i 2 T ) pay taxes honestly while Inhabitants j (j 2 U) pay no taxes

(M = feg [ T [ U and feg \ T = T \ U = U \ feg = ;). In addition to the salary, the enforcer

can con�scate all non-agricultural income of the tax evaders he or she has found out, whose expected

value is �em�1

P
j2U j as his/her income. Here it is assumed that Inhabitant e can �nd out each tax

evader at the probability of �el if he or she monitors l citizens.
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Subgame 4

The m� 1 tax payers make shovels and rice, and pay or do not pay taxes. As the result, Inhabitant

i expects the following income:

Ei =

8>>>>>>>>>><>>>>>>>>>>:

Ee
i = ����

X
j2T

j + �em�1

X
j2U

j if i = e

ET
i = (1� ��)i + �if(1� ��)��

X
j2T

j +Kg if i 2 T

EU
i = (1� �em�1)i + �if(1� ��)��

X
j2T

j +Kg if i 2 U

EL
i = i + �if(1� ��)��

X
j2T

j +Kg if i 2 L

: (1)

3 Game theoretic analysis

Let us assume the following generally. First, every inhabitant is rational and knows all the exogenous

parameters: �i, i, �
i
k, n and K where 1 � i � n and 1 � k � n�1), as common knowledge. Secondly,

as to the range of the exogenous values we assume the following: 0 < �i < 1, 0 < i, 0 < �ik � 1,

0 � K and 3 � n.
A few remarks may be called for the last condition (the �rst condition implies | as stated in the

last section | that no one voluntarily contributes to the accumulation of the public capital). The

condition is a necessary condition for the emergence of a state. If n = 2 and a state is made, the only

tax payer's income is | whether he or she honestly pays tax or not | is smaller than it would be if

he or she were an outsider. Hence, even if both inhabitants agree to make a state at the �rst stage

(Subgame 1), they both will say �i = 0 at the next stage (Subgame 2).

Not being involved in the general solution of the model, we should only like to refer to a simple

example in this paper. To put it concretely, we assume the following: �im�k = � for all 1 � i � n and

1 � k � n � 1); i < j for all 1 � i < j � n; �i = �. The �rst condition, which mainly relates

to the dynamics, have little to do with the analysis of each game (each individual, who lives only

for a period, do not take account for the e�ects of their behaviour on the next period). The second

condition is not very restrictive either: since 1 � i � j � n can be assumed generally, it only implies

that every inhabitant has di�erent productivity. The third condition is the essential one that makes

analysis simple.

Let us solve the model on the above-mentioned conditions by the backward induction, which is

the usual procedure of the analysis of a dynamic game.1

Subgame 4

At this stage, e, ��, �� and M are given. Inhabitant i (i 2M) will pay taxes honestly if and only if

(1� ��)i + �f(1� ��)��
X
j2Ti

j +Kg � (1� �)i + �f(1� ��)��
X
j2Ti

j +Kg: (2)

Here Ti, which represents the set of taxpayers who Inhabitant i expects will pay taxes honestly, can

readily removed from both side:

�� � �̂ = 1� 1

�
(1� �

��
): (3)

1Our model di�ers from that of Okada and Sakakibara (1990) in the following points. First, i are all �xed to be

unity in Okada and Sakakibara (1990) while they can di�er from one another in our model. Secondly, the enforcer

con�scate tax evaders' income in our model. This makes no di�erence in the example of the text, but it makes it

possible that a rational inhabitant becomes a citizen to be a tax evader if �i di�er from one another (this is not allowed

in Okada and Sakakibara (1990) either); see Concluding remarks.
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Hence this condition is independent of i, either all taxpayers pay taxes honestly (M = T ) or no

taxpayers pay taxes (M = U). In either case Ei is uniquely determined for all i (i 2 N):

Ei

8>>>>>><>>>>>>:

= ����
X
j2T

j for i = e

= (1� ��)i + �f(1� ��)��
X
j2T

j +Kg for i 2M

= i + �f(1� ��)��
X
j2M

j +Kg for i 2 L
if (3) is satis�ed (4)

Ei

8>><>>:
= �

X
j2M

j for i = e

= (1� �)i + �K for i 2M
= i + �K for i 2 L

if (3) is not satis�ed: (5)

Subgame 3

At this stage �� and M are given. In other words e and �� must be determined as functions with

respect to �� and M . We can prove the following:2

e = min
j2M

j (6)

�� =

8>>>>><>>>>>:

�̂ if � < �̂ < 1; �̂ < �

� if max[�; �] < �̂; � < 1

1 if � < �̂; 1 < min[�̂; �]

0 if �̂ < �; max
j2M

j < �Z

1 otherwise

(7)

where

� =

(1� �)min
j2M

j + ��(
X
j2M

j �min
j2S

j) + �K

�f(1 + �)
X
j2M

j � min
j2M

j � �min
j2S

jg
(8)

� =

(1� �)min
j2S

j + ��(
X
j2M

j � min
j2M

j) + �K

�f(1 + �)
X
j2M

j �min
j2S

j � �min
j2M

jg
: (9)

Then

Ei

8>>>>>><>>>>>>:

= f1� 1
�
(1� �

��
)g��

X
j2T

j for i = e

= (1� ��)i + (�� � �)
X
j2T

j + �K for i 2M

= i + (�� � �)
X
j2M

j + �Kg for i 2 L
if �� = �̂ (10)

2Proof is all omitted for the following subgames. It is not di�cult but rather involved.
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Ei

8>>>>>><>>>>>>:

= ���
X
j2T

j for i = e

= (1� ��)i + �f(1� �)��
X
j2T

j +Kg for i 2M

= i + �f(1� �)��
X
j2M

j +Kg for i 2 L
if �� = � (11)

Ei

8>><>>:
= ��

X
j2T

j for i = e

= (1� ��)i + �K for i 2M
= i + �K for i 2 L

if �� = 1 (12)

Ei

8>>>><>>>>:
= 0 for i = e

= (1� ��)i + �f��
X
j2T

j +Kg for i 2M

= i + �f��
X
j2M

j +Kg fori 2 L
if �� = 0: (13)

3.1 Subgame 2

At this stage M is given. In other words �� must be determined as functions with respect to M .

Every citizen can o�er his or her acceptable tax rate �i on his or her non-agricultural income and

the minimum �i is adopted as the tax rate of the state (everyone can virtually dissolve the state by

proposing �i = 0). On this assumption we can prove the following:

�� =

8>>>>>>>>>>>>><>>>>>>>>>>>>>:

min[max[�1; �2; �3]; 1] if �� = �̂

0 if �� = �; 0 < a and 0 < min
j2M

bj

min[max[�2; �3; �6; �7; �8]; 1] if �� = �; 0 < a and max
j2M

bj < 0

min[max[�2; �3; �6]; 1] if �� = �; a < 0 and 0 < min
j2M

bj

min[max[�2; �3; �6; �8]; 1] if �� = �; a < 0 and max
j2M

bj < 0

0 if �� = � and min
j2M

bj < 0 < max
j2M

bj

0 if �� = 0 or �� = 1

(14)

where

�1 � �: (15)

�2 �
�min
j2M

j � f(1 + �)
X
j2M

j � min
j2M

j � �min
j2S

jg�+ �2KX
j2M

j � min
j2M

j � �min
j2S

j
: (16)

�3 �
�min
j2S

j � f(1 + �)
X
j2M

j � �min
j2M

j �min
j2S

jg�+ �2KX
j2M

j � �min
j2M

j �min
j2S

j
(17)

�4 �
(� + �)min

j2M
j � �

X
j2M

j + �2K

(� � 1)(
X
j2M

j � min
j2M

j)
(18)
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�5 �
�(
X
j2M

j � min
j2M

j)� �KX
j2M

j � min
j2M

j �max
j2M

j
(19)

�6 �
min
j2S

j + �KX
j2M

j
(20)

�7 �

(min
j2M

j + �K)f(1 + �)
X
j2M

j � �min
j2M

j �min
j2S

jgX
j2M

j � min
j2M

j
�min

j2S
j � �K

�(
X
j2M

j � min
j2M

j)�min
j2S

j
(21)

�8 �
��min

j2S
j(
X
j2M

j � min
j2M

j)(min
j2S

j + �K)

max
j2M

jf
X
j2M

j �min
j2S

j + �(
X
j2M

j � min
j2M

j)g+ �
X
j2M

j(
X
j2M

j � min
j2M

j)
(22)

a � �(
X
j2M

j �min
j2S

j)�min
j2S

j (23)

bi � if
X
j2M

j �min
j2S

j + �(
X
j2M

j � min
j2M

j)g+ �
X
j2M

j(
X
j2M

j � min
j2M

j) (24)

Then

Ei

8>>>>>><>>>>>>:

= �̂��
X
j2T

j for i = e

= (1� ��)i + �f(1� �̂)��
X
j2T

j +Kg for i 2M

= i + �f(1� �̂)��
X
j2M

j +Kg for i 2 L
if �� = max[�1; �2; �3] (25)

Ei

8>>>>>><>>>>>>:

= ���
X
j2T

j for i = e

= (1� ��)i + �f(1� �)��
X
j2T

j +Kg for i 2M

= i + �f(1� �)��
X
j2M

j +Kg for i 2 L
if (29) is satis�ed (26)

Ei

8>>>>>><>>>>>>:

= ��
X
j2T

j fori = e

= �f(1� ��)
X
j2T

j +Kg for i 2M

= i + �f(1� ��)
X
j2M

j +Kg fori 2 L
if �� = 1 and (�� = �̂ or �� = �) (27)

Ei

8<:
= 0 for i = e

= i + �K for i 2M
= i + �K for i 2 L

if �� = 0 and (�� = �̂ or �� = �) (28)
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where

�� = max[�2; �3; �6; �7; �8] or �� = max[�2; �3; �6] or �� = max[�2; �3; �6; �8]: (29)

Subgame 1

Now we have only to determine M . All the 2n subsets of N can be M . For each M , (25), (26),

(27) and (25) determine all Ei. It is assured that there exists a Nash equilibrium If every individual

simultaneously announces whether he or she be a citizen or not, it is assured that there exists a certain

Nash Equilibrium: fx1; x2; : : : ; xng where Xi represents the probability at which Inhabitant i chooses

to be a citizen. Nevertheless it is rather di�cult to calculate it even numerically. We shall thus assume

that Subgame 1 is not a simultaneous game but a dynamic game, where inhabitants announce whether

their decision in a certain order. It is straightforward to calculate a subgame-perfect Nash equilibrium

for the expanded form of Subgame 1, which is unique except for uke, if the value of parameters and

the initial capital stock are given.

4 Results of simulations

Let us continue to examine the example of the last section. Having obtained the subgame-perfect

Nash equilibrium for the game of each year, we can see how it alters as time passes (or the public

capital accumulates because it is assumed that onlyK is variable while all parameters remain constant

through time.

Since it is rather complicated to express the dynamics of Ei(t), we have made simulations, which

show some general features. In this section let us examine the following case:

n = 7; � = 0:9; i = 0:6 + 0:4 i
n+1

; � = 0:2; K(0) = 0 and

K(t) = K(t� 1) + (1� ��(t))��(t)Pj2S(t) j
(30)

As to the order of the announcement in Subgame 1, let us �rst assume that inhabitants announce

whether they become a citizen or an outsider in order of their productivity. That is to say, Inhabitant

7 who has the largest i declares �rst while Inhabitant 1 who has the smallest i says last.

The left side of Figure 1 shows how Ei changes as time passes.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

in
co

m
e

year0 1 2 3 4 5 6 7 8 9 10 11 12 13 13

P5 joins

P6 joins

The state collapses

P1,P2,P3,P4 
make a state

P2 becomes a free-rider

P2 rejoins the state 

Player 21 3 4 5 6 7

lower productivity higher productivity

P7 joins

2

1

3

4

5

6

7 Outsider

Enforcer

Tax Payer

P
la

ye
r

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

in
co

m
e The state collapses

P1 joins to be the enforcer

P2 joins to be the enforcer

P3 joins to be the enforcer

P4,P5,P6,P7 
make a state

Free-rid
ers

Ta
x P

ay
er

s

Player 21 3 4 5 6 7

lower productivity higher productivity

0 1 2 3 4 5 6 7 8 9 10 11 12

P1 declares firstP7 declares first

Figure 1: The dynamics of the state
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Figure 3: The dynamics of capital stock

5 Concluding remarks

Although no citizen evades taxes in the example analysed in this paper, it is not always the case.

Certainly if a state is formed whether an inhabitant joins it or not, there is no point for him/her to

join the state to evade taxes; the evader's income is less than or equal to the outsider's according as

his/her tax evasion is found out or not. Nevertheless a state may be formed only if an inhabitant who

will be a tax evader joins it; because it may increase the expected income of the enforcer who can

con�scate tax evaders' income. Actually we have checked that this possibility is realised for certain

combinations of the value of parameters. Such examples and the results of simulations for them will

be discussed in Part Two of this paper.
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Abstract

In this paper we think of the security market as consisting of two types of investors: fun-
damentalists and bandwagon traders, and propose a heterogeneous agent model that represents
speculative dynamics by using the Synergetic approach [17]. We show the characteristic patterns

of speculative price (speculative bubbles and speculative chaos) which are generated by trading
between the fundamentalists and bandwagon traders.

1 Introduction

A recent important development in the nonlinear dynamic theory is the discovery of deterministic

chaos([25], [29]). During the last few decades, the concept of deterministic chaos has received a great

deal of attention from very diverse scienti�c �elds.

The stock market crash of October 19, 1987 triggered a revolution of chaos in �nance. After the

1987 market crash, a number of economists start thinking seriously about the possibility to apply

theories on nonlinear dynamics and chaos to �nance. Since chaotic dynamics is able to generate large

movements which may look like stochastic processes at a �rst glance, with greater frequency than

linear models, the idea that violent uctuations of speculative prices are generated by some chaotic

process, seems to be intuitively a right solution to bubbles and the crashes in the �nancial markets1.

On the other hand, recently a number of structural asset pricing models have been introduced,

emphasizing the role of heterogeneous beliefs in �nancial markets, with di�erent groups of traders

having di�erent expectations about future prices. Most of these heterogeneous agent models are

composed of two typical agent types. The �rst type is the fundamentalists or arbitrageurs, who

believe that the security price is determined by the market fundamental values. The second type is

the noise traders, sometimes called chartists or technical analysts, who may predict the future price

using simple technical trading rules, extrapolation of trends and other patterns observed in past prices.

Another distinctive characteristics of the recent heterogeneous agent models has emphasized that

heterogeneity in beliefs may lead to market instability and complicated dynamics, including periodic

cycles and chaos in �nancial markets (e.g. [5], [6], [7], [9], [10], [11], [12], [13], [15], [16], [19], [26],

[27], [28], [33], [38]). Among them, the heterogeneous agent models of Lux ([26], [27], [28]) constitute

important examples of recently developed branch of literature on the heterogeneous market hypothesis.

He formalized herd behavior or mutual mimetic contagion in speculative markets. A basic feature

of the framework adopted by Lux's models is that heterogeneous agents are treated as a statistical

ensemble. His mass-statistical formalisation of agents' attitudes and behavior follows a tradition in

the so-called `Synergetics' literature. The concept of synergetics originally developed by Haken[17],

and applied to various problems from social sciences by [36], [37], [31]2.

Lux [26] used a Synergetic approach to formalize the theory of non-rational bubbles and crashes

advanced by [22] who highlights the importance of psychological factors and irrational factors in

explaining historical �nancial crises. Lux [27] explained the so-called leptokurtosis of distribution of

returns which is a basic stylized fact of both exchange rate and share price time series using the

1It has been greatly debated, whether price uctuations in the �nancial markets is random walk or chaos ([32], [20],

[18]).
2Similar statistical approaches have developed to study various problems of social interactions among heterogeneous

agents by [1], [2], [3], [4], [23] and [30].
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Synergetic model with heterogeneous traders. Lux [28] extended his models in the earlier paper

and found chaotic attractors within a broad range of parameter values. He also showed that the

distributions of returns derived from chaotic trajectories of the model exhibit high peaks around the

mean as well as leptokurtosis and become less leptokurtotic under time aggregation.

This paper presents a heterogeneous agent model of speculative dynamics which is based upon the

Synergetic approach to �nance. The basic structure of our model is similar to those of Lux models

([26],[27],and [28]). The main di�erence between Lux models and our model is as follows: in the Lux

models the speculative dynamics is represented by the stochastic di�erential equations. In our model

the speculative dynamics, by contrast, is represented by the stochastic di�erence equations.

We think of the security market as consisting of two types of traders: fundamentalists whose de-

mand (or supply) is based on prices relative to the fundamental value, the so-called fundamentals

prices, and bandwagon traders whose demand (or supply) is based on positive feedback trading strate-

gies. Namely, the bandwagon traders involve buying the security when the price rises, and selling the

security when the price falls3. Therefore, the dynamical properties of the speculative price depend

both on the nature of positive feedback trading by bandwagon traders and arbitrage by fundamental-

ists. Following [21], we introduce the stochastic transition between the seller and the buyer. Under

the circumstance that one cannot get information on the expectations formations and decision-making

of all the traders, a probabilistic setting may be one of best means to formalize the behavior of a large

number of heterogeneous traders. We will show that the characteristic patterns of speculative price

(speculative bubbles and speculative chaos) might be generated from the Synergetic model with fun-

damentalists and bandwagon traders. We investigate three cases: (i) the case of the fundamentalists

that the only fundamentalists exist in the security market, (ii) the case of the bandwagon traders that

the only bandwagon traders exist in the security market, and (iii) the case of the coexistence that

both the typical trader types participate in exchanges. To sum up the major results, we show that

(i) arbitrage by the fundamentalists tends to stabilize the price and tends to converge its price into

the fundamental price, and that (ii) the positive-feedback trading by the bandwagon traders tends

to cause the instability of speculative dynamics, and particularly positive feedback trading reinforced

by the bandwagon e�ect creates bubble-like price patterns and chaos, and that (iii) the combination

of the arbitrage by the fundamentalists and the positive-feedback trading by the bandwagon traders

generate various patterns of speculative price including speculative chaos, and large slowly decaying

swings away from fundamentals price.

Section 2 describes the trading strategies of the fundamentalists and the bandwagon traders, and

the transition probabilities of the investment attitude. Section 3 analyzes the characteristics of the

speculative dynamics. Section 4 gives a brief summary and a remark on limitations of our model.

2 The Model

We think of a security market where many traders participate in trading. Traders are indexed j =

1; 2; : : : ; n. xjt denotes the investment attitude of trader j. The investment attitude xjt is de�ned as

follows: if trader j is the buyer of the security at period t, then xjt = +1. If trader j, in contrast, is

the seller of the security at period t, then xjt = �1. There is a market-maker, such as the specialists

in the New York Stock Exchange, and he/she compares the buying and selling orders by traders, and

executes trading. If the aggregate demand for the security at period t exceeds the aggregate supply

of the security at period t, then the market-maker raises the price of the security at period t, and vice

versa. Hence, an adjustment process of the security price can be described as follows,

Pt � Pt�1 = �f(x1t; x2t; : : : ; xnt); (1)

where f(�) denotes the excess demand function for the security and depends on all the traders'

investment attitudes, and � denotes the price adjustment speed determined by the market maker.

3For implications of positive feedback trading see [34].
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The price change at period t, (Pt � Pt�1) becomes plus (minus) if the security market is in excess

demand (excess supply) at period t.

Here, we assume that volume of trading per trader is the same quantity. Then the excess demand

f(�) depends on the mean value of the investment attitudes xjt

Xt =

nX
j=1

xjt

n
: (2)

If Xt is 0, then there exists the same number of the buyers or the sellers. The situation with

Xt > (<)0 exhibit that more than half the number of the traders are the buyers (the sellers). In the

extreme cases, Xt = +1 or Xt = �1 all the traders are the buyers or the sellers. For convenience of

analysis, we assume that the excess demand function (2) is speci�ed by the following linear function

with respect to Xt:

Pt = Pt�1 + ��Xt (3)

where � denotes the trading volume per trader.

2.1 Fundamentalists and bandwagon traders

As mentioned in the introduction, the security market is composed of two groups of traders having

the di�erent trading strategies; that is, fundamentalists and bandwagon traders. The trading strategies

of fundamentalists are described as follows: if the security price is below the fundamentals price, then

they try to buy the security until the price is equal to the fundamentals price because they think that

the security is undervalued. In contrast, if the security price is above the fundamentals price, then

they try to sell the security until the price is equal to the fundamentals price because they think that

the security is overvalued. To sum up, the fundamentalists' strategies are described as follows:

1. When P � � Pt > 0, the fundamentalists become the buyer of the security at period t+ 1.

2. When P � � Pt < 0, the fundamentalists become the seller of the security at period t+ 1.

3. When P � � Pt = 0, the fundamentalists do not trade the security at period t+ 1.

where P � denotes the fundamentals price.

On the other hand, the trading strategies of the bandwagon traders are described as follows: the

bandwagon traders try to buy the security after the price rises, and sell the security after the price

falls, that is, they follow positive feedback strategies. Thus, the bandwagon traders' strategies are

summarized as follows:

1. When Pt � Pt�1 > 0, the bandwagon traders become the buyer of the security at period t+ 1.

2. When Pt � Pt�1 < 0, the bandwagon traders become the seller of the security at period t+ 1.

3. When Pt � Pt�1 = 0, the bandwagon traders do not trade the security at period t+ 1.

As mentioned above, if the majority of the traders are the seller (Xt > 0), then the price rises

(Pt�Pt�1 > 0), and if the majority of the traders are the buyers (Xt < 0), then the market price falls

(Pt � Pt�1 < 0). Thus, it is possible that the bandwagon traders' strategies are rewritten as follows:

1. When Xt > 0, the bandwagon traders become the buyer of the security at period t+ 1.

2. When Xt < 0, the bandwagon traders become the seller of the security at period t+ 1.

3. When Xt = 0, the bandwagon traders do not trade the security at period t+ 1.
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2.2 The transition probability of the investment attitudes

In this subsection we formalize the transition probabilities of the investment attitudes. It is

assumed that the transition probabilities of the investment attitude depends on (Pt � Pt�1) and

(P � � Pt), because the fundamentalists' investment attitude depends upon the deviation of the price

from the fundamentals price, (P � � Pt), and the bandwagon traders' investment attitude depends

upon the change of the market price, (Pt � Pt�1).

We de�ne the transition probability that a trader changes from the seller to the buyer as g"[(Pt �
Pt�1); (P

��Pt)], and, the transition probability that a trader changes from the buyer to the seller as

g#[(Pt � Pt�1); (P
� � Pt)].

Furthermore, the transition probabilities are speci�ed by the equations (4) and (5):

g"[(Pt � Pt�1); (P
� � Pt)] = �(�+ exp[�(Pt � Pt�1) + �(P � � Pt)]); (4)

g#[(Pt � Pt�1); (P
� � Pt)] = �(�+ exp[�(�(Pt � Pt�1) + �(P � � Pt))]); (5)

where the parameters, � and � are positive. � denotes the strength of the bandwagon traders'

reaction upon the price changes, the so-called bandwagon e�ect, and � denotes the strength of the

fundamentalists' reaction upon di�erences between the actual market price and the fundamental price.

We call � the bandwagon coe�cient, and � the arbitrage coe�cient. These transition probabilities

imply the following:

1. If Pt � Pt�1 > (<)0, then g"[(Pt � Pt�1); (P
� � Pt)] increases (decreases), and simultaneously

g#[(Pt � Pt�1); (P
� � Pt)] decreases (increases).

2. If (P � � Pt) > (<)0, then g"[(Pt � Pt�1); (P
� � Pt)] decreases (increases), and simultaneously

g#[(Pt � Pt�1); (P
� � Pt)] increases (decreases).

3 Speculative dynamics

With the transition probabilities (4) and (5), the time development of the mean values of the invest-

ment attitude Xt and the price P (t) becomes the equations (6) and (7):

hPti = hPt�1i+ ��hXti; (6)

hXt+1i = hXti+ �[(1� hXti)g"[(Pt � Pt�1); (P
� � Pt)]

� (1 + hXti)g#[(Pt � Pt�1); (P
� � Pt)] (7)

where hPti and hXti denote the ensemble mean values of Xt and Pt. The equation (7) can be derived

from the original stochastic system using the Master equation. On details of this derivation see

Weidlich and Haag[36].

Now we have a dynamical system that is formed by the adjustment process of the price (6)

and the dynamics of the investment attitudes (7). We investigate the dynamical properties of the

system (6) and (7) below. We consider three typical cases: the case of the fundamentalists that the

only fundamentalists exist in the security market, the case of the bandwagon traders that the only

bandwagon traders exist in the market and the case that the two typical trader types coexist in the

security market.

3.1 The case of the fundamentalists : � = 0,� > 0

First, we consider the case that all the traders are the fundamentalist. In this case the dynamical

system (6) and (7) rewritten by the following

hPti = hPt�1i+ ��hXti; (8)
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hXt+1i = hXti+ �[(1� hXti)�(�+ exp[�(P � � Pt)])
� (1 + hXti)�(� + exp[��(P � � Pt)])] (9)

For simplicity of analysis we specify the parameters as follows: �� = 0:2,P � = 100, and � = 0:5.

The dynamical system has a unique �xed point, (hP �i; hX�i) = (100; 0). We call the �xed point

the fundamental equilibrium. We can demonstrate the following stability condition:

If the arbitrage coe�cient � < 3=��, then the desired market equilibrium is locally stable.

The proof is trivial and omitted.

Therefore in the case of the fundamentalists the price is stabilized by the fundamentalists' arbitrage

and converge to the fundamental equilibrium, provided that the arbitrage coe�cient � is selected

suitably.

3.2 The case of the bandwagon traders : � > 0 and � = 0

Next, we consider the case that all the traders are the bandwagon traders. Substituting the

equation (6) to the equation (7), the dynamical system is rewritten by the following equations

hPti = hPt�1i+ ��hXti; (10)

hXt+1i = hXti+ ��[(1� hXti)(� + exp[���hXti])
� (1 + hXti)(�+ exp[����hXti])] (11)

Thus the map of hXti, (11) is one-dimensional. We can demonstrate the following stability condition:

If the bandwagon coe�cient � < 3:5=��, then the origin is the unique equilibrium and locally

stable.

The proof is trivial and omitted.

The parameters are speci�ed as follows: �� = 0:5, �� = 0:2, P � = 100, and � = 0:5.

Figure 1, Figure 2 and Figure 3 illustrate the map (11) with the di�erent values of the bandwagon

coe�cient �. These �gures show that (i) for � < 7 the origin is a unique equilibrium and is stable

(Figure 1), and that (ii) for � = 7 a pitchfork bifurcation at the origin occurs (Figure 2), and that (iii)

for � > 7 the origin becomes unstable, and simultaneously the two new equilibria, the bull market

equilibrium and the bear market equilibrium are created, one above and one below the origin (Figure

3). Figure 4 is the bifurcation diagram for the map (11) where the bandwagon coe�cient � varies

smoothly from 7 to 8.2. Note that Figure 4 is created for some positive initial values of the the

investment attitude index, (0 < hX0i < 1). This �gure suggests the following bifurcation scenario

with respect to the bandwagon coe�cient �. If the bandwagon coe�cient � is small, then the bull

market equilibrium is stable for any positive initial values. If � is increased, then the bull market

equilibrium becomes unstable and period doubling bifurcations occur. After in�nitely many period

doubling bifurcations the dynamics becomes chaotic. When � is further increased, the symmetry-

breaking bifurcation [8] occurs, and the sudden increase in symmetry of the chaotic attractor.

Figure 5 and Figure 6 illustrate the time paths of hXti and hPti with � = 7:8. The mean value

of the investment attitude hXti uctuates within the range of the bull market, [0 < hXti < 1], so

that the mean value of the price hPti keeps rising over time. Since the rise in the mean value of the

price is caused by the bandwagon e�ect that are not justi�ed by fundamentals, it seems reasonable

to suppose that speculative bubbles occur in the security market. Figure 7 and Figure 8 illustrate the

time paths of hXti and hPti with � = 8:06 after the symmetry-breaking bifurcation. These �gures

show that the mean value of the investment attitude hXti uctuates chaotically in the broad range of

[�1 < hXti < 1], and various rise and fall patterns of the mean value of the price hPti are created by

the positive feedback trading of the bandwagon traders.

It follows from the numerical analysis that the existence of the bandwagon traders tends to desta-

bilize the price, and positive feedback trading reinforced by the bandwagon e�ect give cause to bubble-

like price patterns. When the bandwagon e�ect is further strong, the instability of the speculative

dynamics is ampli�ed, so that chaos of speculative price is caused.



296 Complex Dynamics of Speculative Price

-1 -0.5 0.5 1
<Xt>

-1

-0.5

0.5

1

<Xt+1>

Figure 1: The map (11) with � = 6.
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Figure 2: The map (11) with � = 7.

3.3 The case of coexistence of fundamentalists and bandwagon traders : �; � > 0

Finally, we consider the case that both typical trader types exist in the security market. In this

case the dynamical system is described by the original dynamical system (6) and (7). We specify the

parameters as follows: �� = 0:5,�� = 0:2,P � = 100, and � = 0:5.

We observed that in the case of the bandwagon traders, the route to chaos passes through a cascade

of period doublings. In the case of coexistence of both trader types we will see the existence of quasi-

periodic transitions to chaos. First of all we consider the stability conditions for the fundamentals

equilibrium (hP �i; hX�i) = (100; 0). We can demonstrate the following stability conditions:

If � < 7 and �� 0:5� < 2, then the fundamental equilibrium is locally stable.

The proof is trivial and omitted. We see from the above stability conditions that if the bandwagon

coe�cient � is small, then the speculative dynamics is stable and the mean value of the price is

converged into the fundamentals equilibrium by the arbitrage of fundamentalists. In other words,

if the bandwagon e�ect is weak in the market, then the speculative dynamics is stabilized by the

arbitrage of the fundamentalists.

To understand the global characteristics of the speculative dynamics in detail, we consider two

cases: the cases with a large arbitrage coe�cient and a small arbitrage coe�cient.

First, we investigate the case with the large arbitrage coe�cient (� = 1). In this case if the

bandwagon coe�cient � is above 7 in this case, then a Hopf bifurcation occurs at the fundamental

equilibrium, and then a quasi-periodic orbit starting from the market fundamental equilibrium ap-

pears. Figure 9 and Figure 10 show two attractors in the (hPt+1i; hPti) plane and (hXti; hPti) plane
with (�; �) = (7; 1). In both the �gures, the orbits converges to attracting invariant `circle' created

in the Hopf bifurcation. When the bandwagon coe�cient � is increased from 7 to 7.4, the invariant

circles break up the into strange attractors (Figure 11 and Figure 12). It follows from these �gures

that the transition occurs from quasiperiodicity to chaos when � is increased from 7 to 7:4, under

� = 1. Figure 13 and Figure 14 show the time paths of hXti and hPti with (�; �) = (7:4; 1). The

time series of the mean value of investment attitude hXti uctuate irregularly within the broad range

[�1 < hXti < 1]. The corresponding time series of hPti is also chaotic.
Second, we investigate the case with the small arbitrage coe�cient (� = 0:01). If the bandwagon

coe�cient � is above 7 in the case with � = 0:1, then a Hopf bifurcation occurs at the fundamental
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Figure 3: The map (11) with � = 8.
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Figure 4: The bifurcation diagram for the

map (11) with respect to �.

equilibrium, and the orbits converges to attracting invariant `square' created in the Hopf bifurcation

(Figure 15 and Figure 16). As the bandwagon coe�cient � is further increased, the invariant squares

break up the into strange attractors (Figure 17 and Figure 18). Figure 19 and Figure 20 show the time

series of the time paths of hXti and hPti with (�; �) = (7:4; 0:01). The mean value of the investment

attitude hXti uctuates irregularly within the range of [0 < hXti < 1] and suddenly falls into the range

of [�1 < hX(t)i < 0] , and then uctuates erratically within the range, and again suddenly jumps up

the range of [0 < hX(t)i < 1], and the same process is repeated. The corresponding time series of the

mean value of the price repeats large slowly decaying swings away from fundamental price.

4 Conclusion

This paper has represented a Synergetic model that stresses the role of irrational sentiment of het-

erogeneous traders. In our model, price uctuations are caused by an endogenous mechanism relating

the fraction of the fundamentalists and the bandwagon traders to the strength of the arbitrage by

the fundamentalists, and that of positive-feedback trading by the bandwagon traders. The important

points as regards the endogenous mechanism that generates speculative dynamics are that (i) a large

fraction of the fundamentalists, or the increasing strength of the fundamentalists' reaction upon dif-

ference between actual price and the fundamentals price, tends to stabilize the speculative price, and

in contrast, (ii) a large fraction of the bandwagon traders, or the increasing strength of the bandwagon

traders' reaction upon di�erence between the price at the present date and the price at the previous

date, tends to destabilize the security price, and (iii) trading between the fundamentalists and the

bandwagon traders generates various patterns of speculative dynamics including speculative bubble,

speculative chaos, and large slowly decaying swings away from fundamental price.

These results seem to provide a useful analytic foundation to experiments on stock market behav-

ior4.

4In the last decade a growing literature on experimental asset markets has emerged. A nice survey of this literature

is given in [35].
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Figure 5: The time path of hXti with � = 7:8.
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Figure 6: The time path of hPti with � = 7:8:

Speculative Bubble.

However, the characterization of the traders is oversimpli�ed and stylized in our model. We employ

implicitly the extreme assumptions on the behavior of the traders: (i) the fundamentalists can know

the exact value of the fundamentals price, and (ii) the bandwagon traders decide their investment

attitude on the basis of the price change from the preceding period to the current period. The latter

assumption implies that the bandwagon traders use only the data of the price at the present period

and the preceding period in order to forecast the future price. As the result our model of speculative

dynamics are formalized by two dimensional di�erence equations.

On the other hand standard �nance models based on the e�cient market hypothesis ([14]) assume

that fundamentalists use all information available to them at present in order to perceive the fun-

damentals price. Similarly, in most of the heterogeneous agent models typical noise traders such as

chartists or technical analysts are assumed to �nd price trends and other patterns observed in past

prices from the long-term data of the prices, and then predict the future price using their technical

trading rules. Therefore it is reasonable to suppose that the trading strategies of the traders will,

at least, depend upon the long-run data of the prices. Whereas we recognize the importance of the

problem on the time horizon in our model, it seems to us that the essential nature of speculative

dynamics remains unchanged in more general frameworks. We leave it for future work to see whether

this conjecture is true.
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1 Introduction

After an era of moderate to high ination lasting almost 30 years, the USA has recently begun to

record falling consumer and intermediate goods prices. Prices in Japan have been static to falling

(except for the immediate impact of the Asia crisis) since 1994, while several European countries have

near zero rates of ination.

Contemporaneously, several major East and Southeast Asian nations have experienced debt-

induced economic collapses, and their largely foreign currency denominated private sector debts were

subsequently dramatically ampli�ed by market-driven currency devaluations. The \Asian crisis" will

have international repercussions, both through a fall in their imports and the ow-on e�fects of their

attempts to export their way out of their di�culties. The deationary tendencies already evident in

the West, and in particular the USA, could thus be ampli�ed.

The prospect of a sustained period of falling prices thus appears likely in the West. While ination

is more likely that deation in Asia due to the impact of the currency collapses, these devaluations

will exacerbate the problems of excessive private sector debt. As has been most obvious in the case

of Indonesia, the market value of a currency is largely determined by speculator expectations of the

country's ability to service its foreign currency debts.

These developments have led many observers to worry that a debt-deationary process may have

commenced in Asia, which may be partially transmitted to the West via aggressive exporting and

consequent import price deation. Signi�cant public �gures are also voicing the concern that policy

experience gained during an era of ination may be inappropriate during one of deation. As Alan

Greenspan commented, \deation can be detrimental for reasons that go beyond those that are also

associated with ination"[4]. To have any inkling of what the economic future might have for us, we

have to consider economic theories of deation in the context of private debt.

2 Economic Theory

Compared to the wealth of economic argument about what can be done to control ination, there

is remarkably little economic theory devoted to deation.1 The main contributions were made by

Fisher during the Great Depression[1], to some extent Keynes[9], and Minsky[11, 12, 13]. Minsky's

\Financial Instability Hypothesis" can be regarded as distilling the essence of these contributions.2

This is that a pure market economy is characterised by a fundamental asymmetry which can cause

the debt to output ratio to rise over time, to levels which can be unsustainable. This asymmetry is

easily put: �rms incur debt to �nance investment during booms, but have to repay that debt during

slumps. Since the cyclical path of a capitalist economy is itself asymmetrical, this results in the

level of debt \ratcheting up" during a sequence of trade cycles. Under fairly general conditions, this

1Milton Friedman is the economist most identi�ed with the drive to control ination. What is less well known is that

his preferred rate of ination was actually minus 4 to 5 per cent a year[2]. The paper in which this result was derived

completely ignored the existence of debt.
2See [13, especially Chs. 1] and [5, 6, 7, 8] for lengthier expositions.
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process can reach a point at which the accumulated debt overwhelms the debt-�nancing capacity of

the economy, thus leading to a Depression.

Conversely, according to Minsky's hypothesis, a mixed market-state economy avoids this tendency

towards complete collapse because the counter-cyclical behaviour of government spending | rising

during slumps and falling during booms | counters the tendency of the private sector to accumulate

excessive debt. Minsky argues that increased taxation during a boom attenuates investment, thus

limiting the tendency to over supply productive capacity and consequently borrow excessively during

a boom, and that increased government spending during a slump provides additional cash ow to

businesses which stops their debt exploding. This argument is in direct opposition to the attitude of

conventional macroeconomic analysis to government spending, which has long since replaced the Key-

nesian advocacy of counter-cyclical government behaviour with an e�ective demonising of government

de�cits.

I have previously modelled these theories in the absence of price dynamics[5, 6, 8]. In this paper

I extend the model to incorporate the impact of a variable price level, and ination-dependent rates

of interest.

3 The Basic Model

The foundation of this model is Goodwin's model of cyclical growth[3], which was itself based upon

the Lotka-Volterra predator-prey model of species interaction on the one hand, and Marx's income-

distribution/employment model of the trade cycle on the other. Over one century later, his arcane

language notwithstanding, the best expression of this model is still that given by Marx:

a rise in the price of labor resulting from accumulation of capital implies . . . accumulation

slackens in consequence of the rise in the price of labour, because the stimulus of gain

is blunted. The rate of accumulation lessens; but with its lessening, the primary cause

of that lessening vanishes, i.e. the disproportion between capital and exploitable labour

power. The mechanism of the process of capitalist production removes the very obstacles

that it temporarily creates. The price of labor falls again to a level corresponding with the

needs of the self-expansion of capital, whether the level be below, the same as, or above

the one which was normal before the rise of wages took place . . . To put it mathematically,

the rate of accumulation is the independent, not the dependent variable; the rate of wages

the dependent, not the independent variable. [10, pp580{581]

Goodwin showed that this could be modelled as a predator-prey system in which workers share of

output played the role of predator, and the rate of employment the role of prey:3

d!

dt
= ! � (P (�) � �)

d�

dt
= � �

�
1� !
v
� �� �

�
; (1)

where ! is the wage to output ratio W
Y
, P (�) is a nonlinear relationship between the rate of change

of wages w and the rate of employment (known as the \Phillips curve"),4 � the rate of employment

or employment to population ratio L
N
, � the rate of growth of labour productivity, � the rate of

population growth, and v the capital to output ratio K
Y
.5 As is well known, this model generates a

stable limit cycle. The model also has an easy verbal explanation. The �rst equation says that workers'

3In that the linear term in the wages share of output equation is negative and that in the employment equation

positive.
4See the Glossary for the form of this and other nonlinear functions used in this paper.
5I have extended the model to include variable capacity utilisation, so that the capital to output ratio is not a

constant, and variable technical change, so that the rate of growth of labour productivity is not a constant[8]. Both

these modi�cations makes the basic 2 sector model unstable, and increase the volatility of the �nal debt-deation model.
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share of output will grow if their wage demands (which are based on the level of employment) exceed

the rate of growth of labour productivity; the second that the level of employment will grow if the

rate of economic growth exceeds the sum of population and productivity growth.

4 First extension: Investment and Debt

The �rst step in extending this model is to replace the linear assumption that capitalists invest all

their pro�ts (1� ! in the previous model is the pro�t to output ratio � = �
Y
) with the more realistic

assumption that investment is a nonlinear function k() of the rate of pro�t
�
�n

K
= �n

v

�
, where �n is

pro�t net of interest payments.6 This does not disturb the underlying nature of the model, which still

results in a stable limit cycle, but it sets the scene for the introduction of a �nance sector.

Finance is introduced into the model by assuming the existence of a banking sector which exists

solely to �nance capitalist investment. The rate of change of debt in this system is thus simply interest

on outstanding debt, plus new investment, minus gross pro�ts:

dD

dt
= r �D + Ig ��; (2)

where Ig = k (�) � Y represents gross investment (in what follows, depreciation is introduced at the

constant rate of  p.a.). This produces the following three-dimensional system:

d!

dt
= ! � (P (�)� �)

d�

dt
= � �

��
k (�n)

v
� 
�
� �� �

�
(3)

dd

dt
= d�

�
r �

�
k (�n)

v
� 
��

+ k (�n)� �;

where d is the debt to output ratio D
Y
and �n is the net pro�t share of output:

� = 1� ! � r � d (4)

As is well known, a three dimensional system introduces the possibility of chaotic behaviour,

and this particular model follows the inverse tangent route to chaos �rst identi�ed by Pomeau and

Manneville[14].

5 Perturbation Analysis

As is easily shown, with the functional form chosen for the \Phillips curve", the equilibrium value of

employment is: 7

�e =
ln (�� C)�A

B
= 97:12% (5)

There is an equilibrium value for pro�t share:

�e =
ln (v � ( + �+ �)�G)�E

F
= 16:18%; (6)

6The term � will be retained for gross pro�t or output minus wages throughout. The term �n will signify gross

pro�t minus all other outgoings, which at this stage means interest on outstanding debt. In the next section, �n will

signify gross pro�t minus interest payments, and taxation minus subsidies.
7With the parameter values used in the following simulations, which were derived by a nonlinear regression of

Phillips's original data against the rate of unemployment. The same regression is used later in the price level section.
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Figure 1: Wages Share and Employment near

Equilibrium
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Figure 2: Debt to Output Ratio near Equilibrium

which corresponds to a rate of pro�t of approximately 5.4% and, given the investment function, an

investment share of output of 16.5%. The equilibrium value for the debt to output ratio is:

de =
k
�
�n
v

�� �n
k( �nv )

v
� 

= 7:02% (7)

Since the pro�t share is a linear combination of ! and d (equation (4)), this gives the curious

result that at the equilibrium, workers' share of output and \bankers' share" are in direct opposition

to each other, whereas \capitalists' share" is constant. The actual expression is:

!e (r) = 1� �n � r � de (8)

This is, unremarkably, signi�cantly di�erent to standard economic models of income distribution,

which argue that remuneration reects relative factor productivity and which are not equipped to deal

with a return to accumulated debt.

This equilibrium vector is locally stable but globally unstable, a signi�cant echo of Fisher's intuition

in 1933 that the market system has an equilibrium which \though stable, is so delicately poised that,

after departure from it beyond certain limits, instability ensues"[1, p339].

Even at this basic level, the model contains some important insights into the role of debt in

a market economy, and the impact of the rate of interest in a model in which, in contrast to the

standard IS-LM model, debt is explicitly accounted for.

Conventional IS-LM analysis argues that an increase in the interest rate will reduce investment

(which is portrayed as a monotonically decreasing function of the interest rate, in contrast to this

model's argument that the rate of pro�t determines the level of investment) and thus growth; however

any impact on the accumulation of debt is ignored. The �nal equation in (3) indicates that, when

debt is explicitly accounted for, it is possible for debt to overwhelm the system, even though the

equilibrium rate of pro�t signi�cantly exceeds the rate of interest.

The approximate 5 year period of the cycles should also be noted: this is similar to those of the

basic 2 dimensional Goodwin model.

Figure 2 shows the time path of the debt to output ratio, which rises in a cyclical fashion initially,

but then also tapers towards its equilibrium value.

The phase diagram in Figure 3 and the period interactions shown in Figure 4 give a clear picture

of the dynamics in this 3 dimensional system.

The initial conditions of slightly higher than equilibrium debt, workers share of output and employ-

ment leads to a downturn, as investment stagnates due to the resulting low rate of pro�t. The excess
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Figure 3: Wages Share, Employment and Debt

near Equilibrium
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Figure 4: Period Interactions of Wages Share,

Employment and Debt near Equilibrium
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Figure 5: Wages share and employment far from

Equilibrium
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Figure 6: Debt to Output far from Equilibrium

of pro�t over investment leads to debt being reduced, but the downturn eventually leads to falling

wage demands, and this leads to a boost in investment well before debt is fully repaid. Debt then rises

with rising employment as investment boosts output, only to lead eventually to rising wage demands

which cut into pro�ts and once again cut o� investment. The cycle then continues, with the system

tapering towards a stable equilibrium debt to equity ratio, wages share and rate of employment.

Conversely, as Figures 5 to 7 indicate, at rates of interest which exceed the equilibrium rate of

growth, the equilibrium vector is unstable. From a conventional macroeconomic point of view, this

system would appear to be stable right up until the �nal crisis, since conventional macroeconomics

dismisses the issue of income distribution as a topic for microeconomic analysis, and ignores the role

of debt. This simulation began with all variables .05 below their equilibrium values:

However, the equilibrium analysis of this model would indicate cause for concern, since the secular

trend towards decreasing workers' share of output would indicate that debt must still be rising, as is

evidenced in Figure 6. Eventually, the level of accumulated debt becomes so high that repayments on

outstanding debt eliminate all pro�t, leading to a collapse in output and hence a Depression:

The phase diagram of this simulation makes the bifurcation in system behaviour as the interest rate

rises graphically apparent. What was previously a stable \volcano" shaped phase diagram becomes
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Figure 7: Wages share, employment and debt far

from Equilibrium
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Figure 8: Period Interactions of Wages Share,

Employment and Debt far from Equilibrium

an unstable \vortex" in which debt overwhelms the other system variables:

There is a super�cially unremarkable explanation for this phenomenon: with a rate of interest

higher than the rate of growth, it is not surprising that debt eventually smothers economic growth.

However this is a nonlinear system, and with initial conditions at a further remove from the equi-

librium, it is possible for the model to undergo a debt blowout even when the rate of interest is

signi�cantly lower than the equilibrium rate of growth. Figure 8 shows the behaviour of the model

with a 3 per cent rate of interest when wages share is initially .1 below, employment .05 below, and

debt .05 above the equilibrium vector of: 24 :83184

:97123

21057

35 :
The behaviour of this model thus clearly supports the Fisher-Keynes-Minsky contention that a

pure market economy is fundamentally unstable, in that it is prone to fall into a debt-induced De-

pression from which there is no escape, bar \resetting the debt clock" via wholesale bankruptcy and

debt moratoria. The next extension similarly supports Minsky's claim that the government sector's

behaviour provides a homeostatic balance which controls and possibly eliminates this tendency to

Depression.

6 Second extension: A Government Sector

Minsky's contention that countercyclical behaviour by government stabilises the market by constrain-

ing its tendency to debt accumulation is explored by introducing government spending and taxation

as functions respectively of the rate of employment and the pro�t share of output.8 This extension

requires new de�nitions for pro�t share and net pro�t share:

The gross pro�t share of output: � = 1� !
The net pro�t share of output: �n = 1� ! � t+ g � r � d
The government spending function: dG

dt
= g (�)� Y

The government taxation function: dT
dt

= � (�n)� Y
8The rate of pro�t is �

v
, where v is a constant in this model. To simplify exposition, I used the pro�t share as the

argument to the investment function rather than the rate of pro�t
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Figure 9: Bifurcation in the equilibrium govern-

ment debt
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Figure 10: Far from equilibrium dynamics at low

interest

where g(�) and �(�) are as de�ned in the glossary. This extension results in the following �ve

dimensional model of a mixed market-state economy:9

d!

dt
= ! � (w (�)� �)

d�

dt
= � �

��
k (�n)

v
� 
�
� �� �

�
dd

dt
= d�

�
r �

�
k (�n)

v
� 
��

+ k (�n)� � + t� g (9)

dg

dt
= g (�)� g �

�
k (�n)

v
� 
�

d

dt
t = � (�n)� t�

�
k (�n)

v
� 
�

(10)

The behaviour of this model is consistent with Minsky's hypothesis. The most intriguing aspect,

from a complex systems point of view, is that the addition of a government sector transforms a system

which was locally stable (about the equilibrium) but globally unstable, into a system which is locally

unstable but globally stable. At least half the eigenvalues of the linearised version have positive real

part for all values of r, yet rather than leading to breakdown, the model is constrained by a chaotic

limit cycle, as the following simulations indicate.

The second intriguing feature of this model is the relationship between government debt and the

interest rate. As with the previous model, the equilibrium wages share of output is a negative linear

function of the interest rate, but in addition the level of government debt is a rectangular hyperbolic

function of the interest rate (see Figure 9):

dg =
t� g

r �
�
k(�n=v)

v
� 
� (11)

9The paper does not consider government debt, because at this level there is no consideration of the redeployment

of net government spending into aggregate demand. The level of government debt can easily be incorporated into the

model via the relation , and its level (as a proportion of output) is visible in these simulations in the gap between  and

t.
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Figure 11: Far from equilibrium dynamics at low

interest
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Figure 12: Far from equilibrium dynamics at low

interest

Thus if the prevailing (real) rate of interest is below the rate of growth of output, then with the

equilibrium values for t and  given by the parameter values used in these simulations, the equilibrium

value of government debt is negative. Equally, if the rate of interest exceeds the rate of growth, the

equilibrium value is positive. While the actual values di�er substantially from equilibrium values

because of the system's far from equilibrium dynamics, this negative/positive bifurcation remains in

any simulation. Figures 10{12 show the behaviour of the model with an interest rate of 3% and a .01

deviation of all system variables from the equilibrium vector.10

The phase diagram in Figure 13 makes it clear that the dynamics are now governed by a chaotic

limit cycle.

The model behaviour on the other side of the bifurcation point di�ers in one highly signi�cant way:

whereas government debt stabilised at a low rate of interest, at a high rate of interest government

debt continues to grow cyclically but exponentially. rising government de�cits have been a feature of

post-WWII economies, especially since the adoption of a \�ght ination �rst" strategy in the mid-70s

in an attempt to control the rate of ination. The cornerstone of this policy was tight monetary policy

| which meant high real interest rates. Figures 14 to 17 demonstrate the behaviour of the model

with an interest rate of 5% and a .01 deviation of all values from the equilibrium vector.

The apparent paradox in Figure 15 | the coincidence of a positive overall government burden

on the economy and yet a growing accumulated government de�cit | is explained by the impact of

the high rate of interest on the current level of outstanding debt, and the already high level of debt

implied by starting from the equilibrium position. However a di�erent initial condition with low or

negative initial government debt could easily result in a surplus being accumulated by the government

(see [5]), as opposed to the de�cit shown here.

7 Third Extension: Commodity Prices

Fisher argued that debt accumulation on its own would not be su�cient to cause a depression, but

instead would give rise to cycles. However the model above indicates the accumulation of debt alone

can lead to a depression | as the end product of a series of business cycles | as the fundamental

asymmetry that �rms incur debt during booms but have to repay it during slumps asserts itself.

Deation is thus not essential to the occurrence of a depression, but it would accelerate the process,

and exacerbate its depth by its impact upon the rate of bankruptcy. Similarly, Minsky's argument

10 (w; l; dk; g; t) = (0:300604985584; 0:971225057244; 0:070191124862;

�0:145020153379; 0:390427727909;�35:696525419245)
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Figure 13: Far from equilibrium dynamics at high

interest

0 20 40 60 80 100 120 140 160 180 200

Years

110

120

130

140

G
ov

er
nm

en
t d

eb
t t

o 
ou

tp
ut

 r
at

io

Figure 14: Far from equilibrium dynamics at high

interest

that capital goods prices are expectations-driven[13, p64, 80] implies that pro-cyclical movements in

capital goods will exacerbate the accumulation of debt, thus hastening the onset of a depression in a

market economy.

These issues can be explored by revising the basic system of equations to include consumer prices

(Pc) and capital goods prices (Pk). We start with an income shares equation in nominal (money)

terms:

Y =W + r �D +�; (12)

where wages can be decomposed into a real wage, a consumer price index, and the level of employment

(L):

W = w � Pc � L: (13)

The wage change relation is now in money terms:

dW

dt
=

d

dt
(w � Pc) =W � w (�) : (14)

On the other hand, the relations between labor and output, and output and capital, must now be

expressed in real terms:

Yr =
Y

Pc
; L =

Yr

a
=

Y

Pc � a ; K = v � Yr = v � Y

Pc
(15)

The introduction of a capital goods price index a�ects the amount paid by �rms for investment

goods, but the change in physical productivity continues to depend on the real increment to capital.

A distinction is thus required between nominal investment (In) which a�ects bank balances, and real

gross investment (Ir) which a�ects the capital stock:

In = Pk � k (�)� Y ; Ir = k (�)� Y (16)

This results in the following system of equations:

d!

dt
= ! �

�
P (�)� 1

Pc
� dPc

dt
� �

�
d�

dt
= ��

�
k (�)

v
�  � �� �

�
(17)

dd

dt
= d�

�
r � 1

Pc
� dPc

dt
�
�
k (�)

v
� 
��

+ k (�)� Pk

Pc
� �
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Figure 15: Far from equilibrium dynamics at high interest

Leaving aside the issue of functional forms for the rate of change of the price indeces, this set of

equations con�rms Fisher's and Minsky's insights concerning the impact of commodity price deation

and capital goods prices. As can be seen from the debt relation, a high rate of commodity price

ination reduces the real debt burden, as Minsky emphasises, while conversely price deation will

lead, as Fisher asserts, to an ampli�cation of the real debt burden. The rate of debt accumulation

also depends on the ratio of the capital goods price index to the consumer price index, and since the
Pk
Pc

ratio will rise during a boom, this will accelerate the process of debt accumulation. The price

system thus apparently increases the instability of the market economy.

To proceed, functional forms for the rate of change of the price indeces must be provided. This

introduces one of the most vexing issues in economics, since despite the con�dence of economists

that they resolved the issue of price determination in the \marginal revolution", their theory of price

setting has been under attack since its inception[15] and is clearly invalid in a dynamic setting.

The theory argues that price is set by the interaction of supply and demand, where the demand

price falls as price rises and the supply price rises under the pressure of diminishing marginal returns.

This generates a function for pro�t � as the gap between total revenue TR and total costs TC, whose

maximum with respect to quantity occurs where \marginal revenue" equals \marginal cost":

� = TR� TC
d

dQ
� =

d

dQ
(TR� TC) =MR�MC (18)

d

dQ
� = 0 where MR =MC

Sra�a's 1926 critique was directed at one of the foundations of this latter argument, that any

resource could be regarded as �xed in any realistic analysis of production in a modern economy. His

critique is ampli�ed when one introduces a realistic notion of time, as opposed to Marshall's deceit

that time could discretely be divided according to the variability of inputs. The neoclassical price-

setting schema is clearly static: it tells how to maximise pro�t with respect to quantity (and thus

determine price), but not how to maximise pro�t with respect to time. Clearly the latter objective is

primary in a dynamic setting, and it can easily be determined via the chain rule:

d

dt
� =

d�

dQ
� dQ

dt
= (MR�MC)� dQ

dt
(19)
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This equation indicates that, regardless of the nature of dQ
dt
, the neoclassical \pro�t-maximisation"

price will result in a zero rate of growth of pro�ts over time | which is hardly the objective of any

existing corporation. Far from being the obvious, simple but insightful rule which most economists

believe it to be, their theory of pro�t maximisation (and hence price determination) is intellectually

equivalent to the advice that the cheapest way to drive from point A to point � is to travel at zero

kilometres per hour. An alternative pricing model must therefore be used. One candidate which is

tractable at both the micro and macro level is the Kaleckian proposition that prices are set by a

markup on prime costs, where these in turn are the wages bill and depreciation:11

Pc =
Y

Yr
=

(1 + �)� (W � L+  �K)

Yr
(20)

In a simple model with a �xed capital to output ratio, the depreciation component has no impact

on the rate of change of prices, so that the rate of change of prices is entirely a function of the rate of

change of wages and the wages share of output:

d

dt
Pc = Pc � (1 + �)� (P (�)� �)� ! (21)

When this is substituted into the model, it results in the following 4 dimensional system:

d!

dt
= (P (�)� �)� �! � (1 + �)� !2

�
d�

dt
= ��

�
k (�)

v
�  � �� �

�
(22)

dd

dt
= d�

�
r � (1 + �)� (P (�)� �)� ! �

�
k (�)

v
� 
��

+ k (�)� Pk

Pc
� �

d

dt
Pc = Pc � (1 + �)� (P (�) � �)� !

One �nal modi�cation is necessary before proceeding to simulations: given a price level, the rate of

interest is no longer a real rate but a nominal one, and must therefore be allowed to vary with respect

to the rate of ination. This extension is not straightforward, since the nominal rate of interest has

the crucial peculiarity that it must be positive, with a minimum rate set exogenously. The interest

rate also responds to ination in a lagged fashion.12 These aspects of the interest rate are captured

in two functions,13 one specifying the lagged reaction of interest rates to the ination rate, the other

ensuring that the interest rate cannot be negative even when the rate of ination is. While the real

world relationships are bound to be more complex than these, they enable a �rst-pass at modelling the

complex relationship between prices and interest rates. Equation (23) speci�es the lagged relationship

between the ination component of the rate of interest and the rate of ination:

d

dt
ri = � 1

T
� ri + 1

T
�
�
1

P
� dP

dt

�
; (23)

where ri is the ination-determined component of the rate of interest, and T is the time lag between

changes to the ination rate and changes to the rate of interest. Equation (24) speci�es the nonlinear

summation of the base and ination-determined components of the rate of interest:

r = rb +
1

2
�
�
ri +

q
r2i + �

�
(24)

where � is a curvature factor which also puts the actual rate above the base rate at zero ination.

A base rate of 3% and a value for � of .000009 results in the following interest rate and ination

relationship:

11Kaleckians also argue that price is set, at least to some extent, to �nance planned investment, though there clearly

are competitive limits to this process.
12Lagged responses are also relevant in many other parts of this model, and will be introduced in further research.
13I am grateful to Trond Andresen for assistance on these issues.
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Figure 17: A Debt-Deation

The full model is now:

d!

dt
= (P (�) � �)� �! � (1 + �)� !2

�
d�

dt
= ��

�
k (�)

v
�  � �� �

�
dd

dt
= d�

�
r � (1 + �)� (P (�)� �)� ! �

�
k (�)

v
� 
��

+ k (�) � Pk

Pc
� � (25)

d

dt
Pc = Pc � (1 + �)� (P (�)� �) � !
d

dt
ri =

�1
T
� ri + 1

T
� (1 + �)� (P (�)� �)� !

This model is capable of demonstrating \Fisher's Paradox", that deation can mean that \the more

debtors pay, the more they owe"[1, p344]. The process of deation turns a low nominal rate of interest

into a high real rate, and the depressing e�ect of debt repayment commitments on investment causes

output to plummet, thus accelerating the blowout in the debt to output ratio. A true Debt-Deation

results:

There are several notable aspects to this extended model. Firstly, price dynamics almost com-

pletely subsume the income distribution dynamics of the previous models.14 This result improves

upon the realism of the basic Goodwin predator-prey cycle, since one well-known stylised fact is the

relative stability of income shares, which display a secular trend but little cyclical behaviour. Secondly

the range of behaviours that the model can demonstrate are dramatically extended over the basic two

demonstrated by the non-price model. Other initial conditions can result in: bouts of cyclical employ-

ment and ination behaviour before either a stable outcome of a debt-induced breakdown; sustained

ination with relatively constant income shares and restrained debt to output ratios; sustained dea-

tion with a secular collapse in workers' share of output; and undoubtedly many more cases which will

be uncovered by more systematic simulation explorations.

Thirdly, breakdown now begins at quite realistic values of the debt to output ratio, and the actual

collapse can precede the blowout in debts to some extent because of the depressing e�ect on investment

of high real rates of interest, caused by the process of deation.

14Indeed in this particular simulation price e�ects do completely subsume income distribution, with worker's share of

output remaining constant throughout. This is however an artefact of the particular initial conditions chosen.



Steve Keen 317

8 Conclusion

>From a complex systems point of view, the addition of price dynamics to the basic Keen-Minsky

model is a double-edged sword. On the one hand, it provides an additional source of potential long-

term stability, with ination countering the tendency towards the accumulation of debt. On the other,

it can accelerate the process of collapse | and possibly dramatically reduce the stable region around

the system's equilibrium. A full answer to this question will have to await future research.

>From an economic point of view, this model demonstrates many of the facets of Fisher's Debt-

Deationary \creed". Given that a debt-deationary process is well under way in East and Southeast

Asia | exacerbated in some instances by severe exchange rate movements which this model is not as

yet equipped to consider | the model contains several important insights for economic management.

Firstly, contrary to conventional economic wisdom, a debt-deation is a possibility: the events in

Asia are not necessarily just the result of peculiar institutional arrangements of those countries.

Secondly, either ination or government de�cits may be necessary to overcome a debt-induced

collapse | though such relatively harmless means of escape from the abyss may be rendered ine�ective

in a world in which �nance is international and exchange rates are market-driven.

Thirdly, as is now becoming obvious even to our most conservative politicians | if not conservative

economists | �nance can play a destabilising role in a capitalist economy. Deregulated �nance is a

recipe for crisis, not e�ciency.
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Glossary

Term De�nition Formula

Y Output

� The gross pro�t to output ratio � = �
Y
= Y�W

Y

a The level of labour productivity

� The rate of growth of labour productivity

a0 The initial level of labour productivity

N The level of population

� The rate of growth of population

N0 The initial level of population

w The real wage rate

W The nominal wage rate

P (�) The Phillips curve function

A;B;C Constants in the Phillips curve function P (�) = eA+b�� + C

� The rate of employment

�n The net pro�t to output ratio �n = Y�W�r�D
Y

;�n = Y�W�r�D�T+G
Y

! The wages to output ratio

 The rate of depreciation

k (�n) The investment function k (�n) = eD+E��n + F

D;E; F Constants in the investment function

D The level of debt (not used directly in simula-

tions)

d The Debt to output ratio

g The government subsidies to output ratio

g (�) The government subsidies function g (�) = eG+H�� + I

G;H; I Constants in the government subsidies func-

tion

G The level of government subsidies (not used

directly in simulations)

� (�n) The taxation function � (�n) = eJ+K��n + L

J;K;L Constants in the taxation function

T The level of taxes (not used directly in simu-

lations)

T The time lag in the interest rate function

Dk The level of capitalist debt

Dg The level of government debt

dk The capitalist debt to output ratio

dg The government debt to output ratio

r The rate of interest

ri The ination component of the rate of interest

rb The base rate of interest

� The curvature factor in the interest rate func-

tion
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Abstract

This paper describes how marketable commodities change as new products appear one after

another. In these circumstances sellers and buyers must follow some heuristic rules. This paper
presents a small model and some results of simulations, which suggest that although the dynamics
of sellers' and buyers' surpluses is mostly explained by the value of their behavioural parameters,

which product is marketable in the long run can be a�ected crucially by the order in which new
products appear and certain stochastic variables.

1 Introduction

Recently such phenomena as increasing returns[2] and winner-take-all markets[5] has attracted much

attention in the economic literature. Among the reason for those results or features of modern market

competition often mentioned, are decreasing average production cost and positive network externality

among producers and consumers. Actually they play an important | sometimes crucial | role in a

number of modern markets, but increasing returns and path dependency can possibly come from other

factors. In this paper we shall present a small model and simulating it to show that such phenomena

can be generated if market participants have bounded rationalities.

Our chief concern is competition among products for daily consumption such as packages of corn

akes and tissue paper, which can be found at any convenience store and supermarket. Consumers'

behaviour and the shops' strategy in the markets for these commodities are by no means simple, but

we could summarise them in the following way.

Consumers make decision only at the point of purchase[6]. They do not spend much time for

purchasing such daily consumption goods as co�ee, toothpaste, margarine and cereals (Dickson and

Sawyer [4, p.47] report that the average time time between arriving at and departing from the product

category display was less than twelve seconds).

Hence shops have only to keep a few products for each commodity from which consumers can

choose a satisfactory one.1 What shopkeepers must do is to keep not the best product for each

customer but a limited number of products which are purchased by most customers.

In Section 2 we shall present a small model of such markets where a shopkeeper and consumers

follow the heuristic rules mentioned above (we consider only cases where there is only one shop in the

neighbourhood). Although the model presupposes very simple behaviour rules of market participants,

their interactions are too complicated to be solved mathematically. We shall thus show some results of

simulations in Section 3. The main results could be summarised in the following way: that although

the dynamics of consumers' surplus and the shopkeeper's pro�t is mostly explained by the value of

their behavioural parameters, which product is marketable in the short and long run can be a�ected

crucially by the order in which new products appear and consumers' stochastic behaviour.

1We refer to Coke, Diet Coke, Pepsi, Diet Pepsi, etc. as products, whilst calling Cola a commodity. We avoid using

brand, which may convey some information (say image) which is not taken into account in this paper. Incidentally we

suppose in the text that a manufacturer may supply more than one product categorised as the same commodity.
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2 The Model

Let us describe our model. There is a village where a grocer andM consumers live. The grocer sells an

assortment of products of a commodity (say cereal food), from which consumers may buy a product

(say a package of corn akes) every week. Each product has its property, or the combination of two

objectively measurable properties (say calories and sweetness), while every consumer has her favourite

property, or the combination of the properties that she likes most. The surplus which consumer i

obtains from the consumption of product j is determined by U � d(i; j) � P , where U , d(i; j) and P
stand for the maximum utility a consumer can obtain from the consumption of the commodity, the

Euclidean distance between consumer i's favourite property and product j's property, and the price of

the commodity respectively. Here U and P are assumed to be common to all consumers and products.

The grocer has two shelves and introduces N new products every T weeks. (Hereinafter we refer

to a period of three weeks at the beginning of which new products appear as a month.) He uses Shelf

One exclusively for those commodities which he has introduced in the present month while keeping

Shelf Two for those commodities which he introduced in previous months.

Every week every consumer goes to the grocer's shop. She immediately goes to one of his two

shelves. Then she picks up a product from the shelf and checks its property. If she �nds it satisfactory,

or if she can get positive surplus from its consumption, she buys it; otherwise she takes another product

from the same shelf and checks its property.2 She repeats this until she �nds a purchasable product

or she has checked all or su�ciently many products on the shelf in vain. (Here su�ciently many is

referred to at most S, where S is a positive constant common to all consumers.) In the former case

she buys the product and leaves the store (if she �nds a purchasable product before checking all or S

products on the shelf, she never goes on searching for a preferable product), while in the latter case

she leaves the shop without purchasing anything (no consumer is supposed to search both shelves.)

The above-mentioned consumers' behaviour is not deterministic. We assume that every consumer

chooses Shelf One or Shelf Two with equal probability and that she picks up Product X from the

shelf according to its occupying space �(X).3 If there are 50 packages of Product A, 30 packages of

Product B and 20 packages of Product C on the shelf she has chosen, �(A) = 0:5, �(B) = 0:3 and

�(C) = 0:5 so that she �rst picks up A, B and C at 50, 30 or 20 percent probability respectively; if she

takes up A and not be satis�ed with it, she may try another product, which will be B at 60 percent

probability and C at 40 percent probability.

The grocer shelves products at the beginning of every week. When new products do not appear, he

deals with his two shelves independently but according to the same principle. Let us designate �(X)

as the ratio of the sales of Commodity X to the total sales from the shelf where it is (since the price

is common to all products, it makes no di�erence whether �(X) is measured in monetary terms or

in quantitative terms). The grocer removes those products where � was smaller than a certain value

E 2 (0::1) last week, restocking the remaining products proportional to their last week's �. As an

example let us suppose that there were only three products A, B and C on a shelf last week and that

their sales were 540, 360 and 100 respectively. If E = 0:15, the grocer takes away C to put A and B

with �(A) = 0:6 and �(B) = 0:4 for this week. (The grocer keeps the same value of � for all products

for a week: as soon as a package of a product is sold, he puts another package of the commodity on

the shelf.)

The grocer combines his two shelves only at the beginning a month. Then he calculates | as he

does at the beginning of every week | � for each shelf and | unlike in the usual shelving | select

those products whose � is less than 2E and puts them on Shelf Two according to their last week's �,

putting all new products equally on Shelf One: � = 1
N

for each new product.

The following example illustrates the above-mentioned monthly shelving. Suppose that the sales

2Obviously unrealistic is our assumption that consumers know perfectly the property of those products which they

have not bought before. Thus we have also made simulations where consumers can measure d(i; j) only with certain

errors, say ten percent. However, we have not found any signi�cant di�erences between such cases and cases mentioned

in the text.
3This assumption is based on the empirical studies of Borrin and Faris [3], and Agrawal and Schorling [1].
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Figure 1: Distribution of Consumers' Favourite

Property Points

Figure 2: Distribution of Products' Property

Points

of the last week of the last month are as follows: from Shelf One 15 packages of Product A, 12

packages of Product B and 3 packages of Product C; from Shelf Two 15 packages of Product D, 15

packages of Product E and 10 packages of Product F. Then �(A) = 0:5, �(B) = 0:4, �(C) = 0:1,

�(D) = �(E) = 0:375 and �(F ) = 0:25. If E = 0:15, at the beginning of this month, the grocer keeps

A, B, D and E with �(A) = 0:3 = 0:5
0:5+0:4+0:375+0:375)

, �(B) = 0:24, �(D) = 0:23 and �(E) = 0:23.

3 Simulations

3.1 The Value of Parameters and the Initial Condition

Having done a number of simulations with di�erent conditions, in this paper we should like to mention

only the cases where there live 200 consumers (M = 200); �ve new products appear every three weeks

(N = 5 and T = 3); the period of simulation is 60 weeks or 20 months; the price of a product is

30 (P = 35); the maximum surplus from consuming a product is 60 (U = 60); consumers' favorite

property points cluster around (20; 80), (80; 60) and (20; 20) as Figure 1 shows; products' property

points are widely scattered as Figure 2 shows.

All simulations in this section presuppose the distribution of property points mentioned in Figures

1 and 2. In addition, though not explicitly shown in Figure 2, the 100 products appear in a �xed

order with respect to the product properties in every simulation. Maintaining all the above-mentioned

conditions and values, we shall examine the following four cases: E = 0:05 and S = 2 (the solid line

with circles); E = 0:05 and S = 3 (the solid line with squares); E = 0:15 and S = 2 (the bold line

with circles); E = 0:15 and S = 3 (the bold line with squares). Each case is designated as the line

mentioned in the parentheses in all the �gures of this section. For each of the four cases we have done

one hundred simulations with di�erent random seeds which determine the consumers' probabilistic

choice of shelves and products. All the lines in the �gures of this section represent the average weekly

values calculated from the one hundred simulations.

We shall show the results of simulations for the basic model in the next subsection, mentioning

the results for the generalised model in the conclusion.

3.2 The Results of Simulations

Let us start our analysis by examining Shelf One. Figures 3 and 4 represent, for each week of a month,

the average number of products on the shelf and sales (the number of packages sold) from the shelf

respectively.

We can see from the �gures that shelving works: all four lines representing the number of products

are decreasing while all four lines designating sales are increasing. In fact the grocer's shelving and



Yusuke Koyama and Sobei H. Oda 323

Figure 3: The number of Products on Shelf One

(Weekly)
Figure 4: Sales from Shelf One (Weekly)

Figure 5: The Number of Products on Shelf Two

(Monthly)
Figure 6: Sales from Shelf Two (Monthly)

consumers' behaviour make marketable products more marketable in turn: If �(X) increased last

week, the grocer accordingly increases �(X) this week, which will increase the chance where X will

be picked up by consumers so that �(X) will increase.

Let us now examine Shelf Two. Unlike products on Shelf One, which appear with random property

and are replaced every month, products on Shelf Two may stay for more than one months if they

are marketable. Actually the grocer may probably expect that sales from Shelf Two increases in the

long run as the result of shelving. To examine whether shelving works as the grocer expects, we

may examine the average number of products on Shelf Two (Figure 5) and the weekly sales from the

(Figure 6).

Let us examine cases where E = 0:15. In Figure 5 both bold lines are often below the horizontal

line of 3. This suggests that there often remain less than three products on Shelf Two (although it

is not apparent in the �gure, there usually remain only products for the second and third weeks of

a month particularly in the second half of the simulation period). Seeing that consumers' favorite

property points are distributed around three distant points, we can guess that about one third of those

who have chosen the shelf (about M
2
= 100 persons) may not be able to �nd a purchasable product.

In fact both bold lines fall below the level of 66:7 = 2
3
� 100 in the long run.

Let us examine how over-elimination of products or awkward shelving, the shelving which discards

all products whose properties are near the centre of the distribution of consumers' favorite properties,
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Figure 7: Total Consumers' Surplus (Monthly)
Figure 8: Average Purchasers' Surplus

(Monthly)

is made. We shall see it is crucial that 0.15 is only marginally smaller than 1
6
.

Over-elimination of products can be the direct result of common weekly shelving. Let us suppose

that there are four products A, B, C and D on a shelf. If the properties of A and B are very close to

two of the three centres of the consumers' favorite properties respectively while C and D are equally

near but not very close to the other centre, both �(C) and �(D) will be a little smaller than 1
6
. If

they are less than 0.15, both products are removed from the shelf.

Monthly shelving can be awkward too. Suppose that at the end of the last month both Shelves One

and Two contain three products which are purchasable by the most of the three groups of consumers

respectively. If E = 0:05, at the beginning of this month all six products will be on Shelf Two and

hopefully a less favourable product may be removed for each group of consumers through the preceding

weekly shelving. Nevertheless if E = 0:15, the less preferable product or both products to a group of

consumers may be discarded by the shelving at the beginning of this month. Moreover if one or two

products remain for each group of consumers, they have such properties as mentioned in the example

of the previous section.4

Let us now examine cases where E = 0:05. We can see from the bold lines in Figure 5 and 6

that for both S = 2 and S = 3 there are about four products on Shelf Two while sales from the

shelf are rather di�erent between the two cases. The di�erence in sales is understandable if sales

are calculated on the supposition that there are four products and that if consumers check all the

four products, two thirds of them �nd a commodity is purchasable while the other one third �nd two

purchasable products. If one hundred consumers search for a purchasable product only twice (S = 2),

( 2
3
� 1

2
+ 1

3
� 5

6
) � 100 = 61 persons will �nd a purchasable products. Similarly for S = 3 the total

sale will be ( 2
3
� 3

4
+ 1

3
� 1)� 100 = 83. Both are quite near to the long-run average sales in Figure 6.

Now let us examine the consumers' surplus. Figure 7 shows the total consumers' surplus while

Figure 8 represents the per-buyer surplus, which is obtained by dividing the total surplus by the

number of purchasers.

We can see from Figure 7 that the total consumers' surplus increases if S increases from 2 to

3, and from Figure 8 that it is not because the surplus which a consumer obtains from buying a

product increases but because the number of purchasers increases. This is quite understandable. If

each consumer can check more products, more consumers may probably �nd a satisfactory product,

4A few remarks: First, in our simulation more products are eliminated by monthly shelving than by common weekly

shelving. This is because the criteria for elimination is doubled: 2E = 0:3; otherwise many products could survive

monthly shelving. Yet even then � cannot but be reduced to half them so that most of them will be removed by the

succeeding common shelving. (Actually those products which would not be removed by it if 2E = 0:3 for the preceding

monthly shelving may be eliminated, because those products with � < 0:15 remain on the shelf and accordingly � for

the other products are smaller.) What is special for monthly shelving is not the doubling of E but reducing � by half.

Secondly, if E > 0:17, such cases where no commodities remain on either shelf are observed in our simulations. In this

meaning 1
6
sets the maximum value for E.
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Figure 9: Surviving Rates of Products
Figure 10: Elimination Tournament among

Products

but in our simulations it is assumed that those who have found a purchasable product cease searching;

in this case few consumers can buy a more desirable product.

Lastly let us examine the dynamics of each product. Let us de�ne the index for survivability

for each product as V (i) =
P100

k=0 v(i;k)

101�[k=5]
where v(i; k) represents the number of simulations where

Commodity i exists on a shelf for Week k (0 � v(k) � 100) while[x] stands for the minimum integral

number that is smaller than x. Figure 9 shows the relation between V (i) (the vertical axis) and D(i)

the distance between the product's property point and the nearest distribution centre of consumers'

favorite points (the horizontal axis) for products 1 to 50, which appear in the �rst ten months.

We can see a negative correlations between V (i) and D(i). We could thus safely conclude that

those products which are purchasable by more consumers are more likely to survive. Nevertheless this

is such a general tendency that it cannot predict which product dominates in the long run precisely.

As an example let us look at the seven leftmost products: A1, A2, A3, A4, A5, A6 and A7. The order

of survivability is A2, A1, A3, A6, A7, A5 and A4.

The main reason for the discrepancy between v(i) and d(i) is that all commodities do not appear

at the same time. Figure 10 shows v(i; k) for the �ve products that are the nearest to (80; 60): A,

B, C, E and E (E = 0:15 and S = 2). Products A and B appear at the same time with marginally

di�erent D (D(A) < D(B)); the marginal di�erence is fatal for Product B, which is soon removed by

shelving. Nevertheless Product A is not the product that has the greatest chance to survive in the

long run: with a larger D(C), Product C has a greater chance. If Products A and C were introduced

at the same time time with the same �, Product B would soon be eliminated, just as Commodity B

is. Hence � of products on Shelves One and Two would be such that at the beginning of a month �

for Commodity B would be zero or very small; as stated above such awkward shelving is observed for

E = 0:15 in particular (yet, though less frequently, awkward shelving is often observed for a smaller

E).

Whether and how long each product is marketable is crucial to producers of products, but scarcely

does it a�ect the total consumers' surplus and the grocer's pro�t. Our model produces a phenomenon

which Frank and Cook [5, p.3] refer to in the best-seller book: When only barely perceptible quality

margins spell the di�erence between success and failure, the buying public may have little at stake in

the battles that decide which products win. But to the manufacturers the stakes are often enormous

| the di�erence between liquidation and the continuation of multibillion-dollar annual revenues.
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4 Concluding Remarks

Needless to say, our model is so simple that there remains much room for generalisation. We should

here briey mention the generalisation of the model.

We have made and examined a model where consumers have short-term memory. To put it

concretely the model assumes the following consumers' behaviour. If a consumer purchased nothing

last week, her memory is empty and does what she is supposed to do in the basic model. Yet if she

bought a product last week, she remembers it and when she enters the grocer's shop, she asks him

if she can buy it this week too. If he answers in the negative, she does what she would do if she did

not buy a product last week. If he answers in the a�rmative, she immediately buys it with a certain

probability F (0 < F < 1) or goes to either shelf with the remaining probability 1� F . In the latter

case she looks not for a purchasable product but for a preferable one: Consumer i buys Product j not

when 0 < U � d(i; j) � P but when d(i; j) < d(i; l) where Product l is the product she bought last

week. If she has checked all or su�ciently many products on the shelf in vain, she buys the one she

bought last week rather than leaving the shop without buying anything. There is no other di�erence

between this model and the basic model de�ned in Section 2.

Simulations show the following. First, consumers' obtain more surplus when they have short-term

memory. This is simply because a consumer never fail to gain at least the same surplus as she got

last week if she can purchase the same product as she bought last week. Secondly, those commodities

which are introduced in earlier weeks have greater chance to survive in the long run. This is also quite

understandable: those products which are stored in consumers' memory has an advantage.
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Abstract

The Santa Fe Arti�cial Stock Market[13, 4] is an agent-based arti�cial model in which agents
continually explore and develop expectational models, buy and sell assets based on the predictions

of those models that perform best, and con�rm or discard these models based on their performance
over time. The purpose of this paper is to classify the di�erent types of behavior that emerge in the
market as a function of evolutionary learning rate, and to explain these emergent behaviors. We

observe four di�erent types of behavior, which are distinguished by their e�ects on the volatility
of prices, the complexity of strategies, and the wealth earned by agents over time. We also show
that the di�erences between these behaviors may be attributed to variations in the rate at which

agents revise their trading rules and the subsequent types of rules|technical or fundamental|
that emerge in the market.

1 Introduction

Financial markets are complex. Their booms and crashes [15, 16, 17], distinct moods [1], and non-

linearities [14, 8, 9] all blunt the analytical tools of traditional economic theory. Reexamination of

�nancial market behavior with the new techniques of agent-based economic modeling is now suggesting

that this type of complexity may be an intrinsic property of such systems [13, 4, 10, 7].

The Santa Fe Arti�cial Stock Market, developed by Brian Arthur, John Holland, Blake LeBaron,

Richard Palmer, and Paul Taylor at the Santa Fe Institute, provides a compelling example of how

simple endogenous forces can cause complex market behavior. Arthur et al. [13, 4] showed that

varying the rate at which individual agents learn new investment strategies reveals two di�erent

kinds of overall market behavior. If investment strategies evolve slowly, the market showed behavior

generally consistent with the prediction of traditional economic theory. But if the strategies were

allowed to evolve more quickly, the market showed the kind of instabilities and statistical properties

typically observed in real-world markets. Their work suggests that the cause of the complex behavior

of �nancial markets may involve the rate at which investment strategies evolve.

This paper follows up on the work of Arthur et al. by taking a closer look at the kinds of behavior

exhibited by the Santa Fe Stock Market model. We systematically study how the market's behavior

depends on the rate of evolutionary learning, classify the various behaviors that emerge, and attempt

to explain these behaviors. The main novelty of the present study is the light shed on market behavior

by the historical patterns in the activation of investment strategies.

2 The Santa Fe Arti�cial Stock Market

The arti�cial stock market we study here was developed by Brian Arthur, John Holland, Blake

LeBaron, Richard Palmer, and Paul Taylor [13, 4]. The market consists of a population of het-

erogeneous agents that buy, sell, and hold stocks and bonds. An agent's buy, sell, and hold decisions

are made on the basis of that agent's beliefs about whether the stock's dividend is likely to go up or

down, and those beliefs are determined by a set of market forecasting rules that are continually being
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assessed as to accuracy. Over time an agent's set of market forecasting rules evolve under the action

of a genetic algorithm.

The following sections provide a brief introduction to the Santa Fe Arti�cial Stock Market model.

More detailed descriptions are available elsewhere [13, 4]. When mentioning some of the model

parameters below, we indicate the speci�c parameter values we used in the work reported here with

typewriter font inside brackets [like this].

2.1 The Market

The market contains a �xed number N [25] of agents that are each initially endowed with a certain

sum of money (in arbitrary units) [1000]. Time is discrete. Each time period each agent must decide

whether to invest her money in a risky stock or in a risk-free asset analogous to a real world Treasury

Bill. The risk-free asset is in in�nite supply and pays a constant interest rate r [10%]. The risky stock,

issued in N shares, pays a stochastic dividend that varies over time. The stock's dividend stream is

an exogenous stochastic process whose present value is unknown to the agents.

Agents apply their market forecasting rules to their knowledge of the stock's price and dividend

history to perform a risk aversion calculation and decide how to invest their money at each time

period. The price of the stock rises if the demand for it exceeds the supply, and falls if the supply

exceeds the demand. Each agent in the market can submit either a bid to buy shares, or an o�er to

sell shares|both at the current price pt|or neither. Bids and o�ers need not be integers; the stock

is perfectly divisible. The aggregate demand for the stock cannot exceed the number of shares in

the market. The agents submit their decisions and o�ers to the market specialist|an extra agent in

the market who controls the price so that his inventory stays within certain bounds. The specialist

announces an initial trial price, collects bids and o�ers from agents at that price, from these data

announces a new trial price, and repeats this process until demand and supply are equated. The

market clearing price serves as the next period's market price.

2.2 Agents and Market Forecasting Rules

Agents possess a constant absolute risk-aversion utility function of the form U(c) = � exp(��c),
where � [0.5] measures the extent of risk aversion and 0 < � � 1000. At each time period each agent

determines the number of shares and risk-free bonds that maximizes her utility of consumption. The

outcome of this decision depends on the agent's estimate of the pro�tability of the stock and bond.

The agents make their investment decisions by using a set of hypotheses or rules about how to

forecast the market's behavior. At each time period, each agent considers a �xed number [100] of

forecasting rules. The rules determine the values of the variables a and b which are used to make a

linear forecast of next period's price:

E(pt+1 + dt+1) = a(pt + dt) + b

where pt is the trial price and a and b are the forecasting parameters. The forecasting rules have the

following form:

if (the market meets condition Di) then (a = kj ; b = kl)

where Di is a description of the state of the market and kj and kl are constants.

Market descriptors (Di) match certain states of the market by an analysis of the price and dividend

history. The descriptors have the form of a boolean function of some number [12] of market conditions.

The set of market conditions in each rule is represented as an array of bits in which 1 signals the

presence of a certain condition, 0 indicates its absence, and # indicates \don't care". The breadth and

generality of the market states that a rule will recognize is proportional to the number of # symbols in

its market descriptor; rules with descriptors with more 0s and 1s recognize more narrow and speci�c

market states. As these strings are modi�ed by the GA, the number of 0s and 1s might go up, allowing
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them to respond to more speci�c market conditions. An appropriate reection of the complexity of

the population of forecasting rules possessed by all the agents is the number of speci�c market states

that the rules can distinguish, and this is measured by the number of bits that are set in the rules'

market descriptors.

There are two di�erent kinds of market conditions: those pertaining to trends in the stock price,

which are recognized by technical trading bits, and those pertaining to the relationship between

the stock's price and its fundamental value, which are recognized by fundamental trading bits. So,

there are two (overlapping) kinds of rules, depending on whether their descriptors have technical or

fundamental bits set. Technical trading rules are activated when the current state of the market meets

some condition pertaining to a price trend (e.g., the condition that the current stock price exceeds

the average price over the past �fty time periods). Fundamental trading rules are activated when the

current state of the market meets a condition pertaining to the relation between the stock's price and

fundamental value (e.g., the condition that the the current stock price times the interest rate divided

by the most recent stock dividend exceeds 0.75). This method of modeling expectation formation

makes it is possible to track exactly which descriptor bits (technical or fundamental) are being used

by agents in the model, and this allows us to study the conditions under which technical trading

emerges in the market.

An example may help clarify the structure of market forecasting rules. Suppose that there is

a twelve bit market descriptor, the �rst bit of which corresponds to the market condition in which

the price has gone up over the last �fty periods, and the second bit of which corresponds to the

market condition in which the price was 75% higher than its fundamental value. Then the descriptor

10########### matches any market state in which the stock price has gone up for the past �fty

periods and the stock price is not 75% higher than its fundamental value. The full decision rule

if 10########## then (a = 0:96; b = 0)

can be interpreted as \If the stock's price has risen for the past �fty periods and is now not 75%

higher than its fundamental value, then the (price + dividend) forecast for the next period is 96% of

the current period's price."

If the market state in a given period matches the descriptor of a forecasting rule, the rule is said to

be activated. A number of an agent's forecasting rules may be activated at a given time, thus giving

the agent many possible forecasts to choose from. The agent decides which of the active forecasts to

use by measuring each rule's accuracy and then choosing at random from among the active forecasts

with a probability proportional to accuracy. Once the agent has chosen a speci�c rule to use, the

rule's a and b values determine the agent's investment decision.

2.3 The Genetic Algorithm

A genetic algorithm (GA) provides for the evolution of the population of forecasting rules over time.

Whenever the GA is invoked, it substitutes new forecasting rules for a certain fraction [5%] of the least

�t forecasting rules in each agent's pool of rules. A rule's �tness is determined by both how well it has

performed and by how complex it is (the GA has a bias against complex rules). Applying the genetic

operators of mutation, crossover, and inversion to the most successful rules in the agent's rule pool

creates the new rules, with more accurate rules producing more o�spring. New rules are assigned an

initial accuracy by averaging the accuracy of their parent rules.

The only market parameter that we varied in the results described below is the waiting time

between invocations of the GA. We term this waiting time between GA invocations the GA interval.

So, if the GA is invoked every time period, GA interval is 0; if the GA is invoked every 1000 time

periods, GA interval is 1000; if the GA is never invoked, GA interval is 300000 (this was the total

length of the simulation).

The model contains another mechanism for changing an agent's rules. If some agent's rule is not

activated (thus not considered for use) by an agent for a signi�cant number of time periods [1000],
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Figure 2: Number of bits in each agent's pool of trading strategies that are set to non-null values (a

measure of strategy complexity) as a function of the GA interval. A line showing the average number

of bits set at each GA interval overlays a scatter plot of data from all the simulations. Left: all bits are

graphed together. Right: technical trading bits (open triangles) and fundamental trading bits (open

dots) are graphed separately. The number of bits set is normalized (i.e., divided) by the total number

of bits available. The number of bits set at very large GA intervals simply reects the number of bits

set in the initial population of strategies; the GA cannot change the strategy bits if it virtually never

runs. When the GA interval does signi�cantly change the complexity the strategies, large interval GA

lowers it, small interval GA raises it, and very small GA interval lowers it.

4 Results

We observed four distinct types of behavior in the model, corresponding to four kinds of evolutionary

learning. Two have been previously noted [13, 4]; the other two are boundary conditions. The

di�erences between the four kinds of behavior can be seen in the volatility of prices, the wealth earned

by agents (Figure 1), the total number of bits that are set in the forecasting rules, the relative number

of technical and fundamental bits set (Figure 2), and the activation histories of the rules used by

agents (Figures 3 and 4). Other di�erences (not shown here) can be seen in the mean prices, the

trading volumes, and the deviations of the stock price from its fundamental value. The four classes

of behavior can be summarized as follows, starting with the two boundary conditions:

1Unpublished results involving variation in GA interval alone have been mentioned in a footnote in [4].
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Figure 3: Activation of the investors' individual trading strategies as a function of time, at three GA

intervals. Left: GA interval is 300,000; the GA never runs. Middle: GA interval is 10000; the GA

runs 30 times in 300,000 time periods. Right: GA interval is 1500; the GA runs 200 times in 300,000

time periods.
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Figure 4: Activation of the investors' individual trading strategies as a function of time, at three GA

densities. Left: GA interval is 250; the GA runs 1250 times in 300,000 time periods. Middle: GA

interval is 5; the GA runs 60,000 times in 300,000 time periods. Right: GA interval is 0; the GA runs

every time period.

Class I: No evolution so no rule switching. When the GA is never invoked (GA interval is the

length of the simulation, i.e. 300; 000 time periods), the agents have no choice but to stick with

the pool of hypotheses with which they were initially endowed. The main characteristics of this

regime are low volatility of prices, low accumulated wealth, and similar levels of fundamental

and technical trading.

Class II: Too fast evolution prevents rule switching. When the GA is invoked at every time

period (GA interval is 0), the prices are very stable, the complexity of strategies is very low,

there is no signi�cant di�erence between technical and fundamental trading, and wealth earned

is high.

Class III: Slow evolution enables only slow rule switching. When the

GA interval is moderately low (1000 � interval � 10000), price volatility is moderately low,

the complexity of forecasting rules is low, wealth earned is high, and technical trading is low.

In previous work the model authors noted that this class of behavior is consistent with the

predictions of the theory of Rational Expectations and the e�cient markets hypothesis is �nance,

so they called this the Rational Expectations (RE) regime [13, 4].

Class IV: Fast evolution encourages frequent rule switching. When

the GA interval is moderately high (100 < interval � 1000), prices are volatile, the complexity of

strategies is very high, wealth earned is low, and there is signi�cant technical trading. The model

authors observed that prices in this class of behavior deviate signi�cantly from their fundamental

values, bubbles and crashes occur frequently and the market shows statistical properties similar

to real world stock markets [13, 4] They called class IV the Complex Regime.

Classes I and II are very similar but we classify them separately because their behavior has signi�-

cantly di�erent causes. In Class II the GA is invoked at each time step and so the pool of decision rules

is constantly changing, whereas in Class I the GA is never invoked and the pool of rules undergoes

no changes at all. The behavior seen in Class II arises from a market that appears to be somewhat

chaotic, even though it resembles a regime that is the exact opposite.

It is important to note that the classes described above are separated by periods of transition.

At GA interval of 5 for example, the market shows characteristics of Class II and Class III behavior.

The time series data of stock prices, wealth, technical and fundamental trading and the complexity

of strategies appear to belong to class III, and the underlying behavior resembles both Class II and

Class III(Figure 4).2. An interesting topic future research is to investigate the exact nature of the

transition between these classes.

2The activation history graph (Figure 4)shows that that the set of strategies used by agents is quite stable over time.

This makes it similar to Class II. But unlike class I, some other strategies are also used (though not as frequently as

the set of stable strategies). This makes it resemble Class III
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5 Discussion

The four di�erent classes of behavior described above may be attributed to the e�ects of GA invo-

cation rates on agent's evolutionary's learning. Evolutionary learning a�ects the rate at which the

agents switch between trading strategies. At the boundary conditions (GA interval 0 and GA inter-

val 300,000) evolutionary learning is virtually nonexistent and so there is no signi�cant evolution of

trading strategies. Since the agents' trading strategies are relatively stable, so is the price series in

the market. By contrast, when the GA interval is moderately low or moderately high, evolutionary

learning is signi�cant and this leads the agents' trading strategies to evolve, and this in turn makes

the market less stable.

The speed at which agents switch strategies also a�ects the type of rules that they use: technical

trading is signi�cantly higher when the GA interval is moderately small. One explanation of this

e�ect, developed below, depends on the connection between the \breathing time" a new rule enjoys

before being scrutinized by the GA. Arthur et al. provide an additional explanation of this e�ect [4]:

When GA interval is small, the agents switch rules often enough that it becomes likely for similar

technical trading rules to be used by other agents in the population. Technical trading rules, when

used by enough agents, can become self-ful�lling prophesies|if enough people believe the stock price

is due to increase and buy the stock as a result, their demand for the stock will drive up the price|

thus leading to market bubbles and crashes. Market volatility is roughly proportional to the presence

of technical trading, so the regimes with less technical trading are signi�cantly more stable.

In class I with GA interval at or near 300; 000, the same pool of market forecasts available to the

agents virtually never changes. The number of technical and fundamental bits set in the population

of forecasting rules (Figure 2) reects the complexity of the rules randomly assigned at the start of

the simulation. In addition, as Figure 3 (top) shows, the rate at which di�erent forecasting rules are

activated by the market states is quite constant over time, and presumably the rules the agents actually

use is similarly constant. In fact, fully a quarter of all of the available rules are activated virtually

every time period, and thus contribute to the slope 1 line in the Figure. The agents' behavior becomes

quite stable and predictable, which makes the market stable and predictable in turn, as Figure 1 (top)

shows. (We are unsure why average �nal wealth in this regime varies as observed in the bottom of

Figure 1.)

In class II with GA interval at or near 1, the GA's continual operation causes continual ux in

the population of rules available to the agents. Yet, as Figure 3 (bottom) shows, virtually always

the same subset of forecasting rules is activated. Furthermore, close to 95% of the available rules

contribute to the slope 1 line representing these continually activated rules. The rules the agents

actually use are chosen from these continually reactivated rules, of course, so Figure 3 (top) shows

that the agents' trading strategies are stable over time. Thus, although there is a continual ux in

the population of rules, the subset of rules actually used virtually never changes. The same subset

(5%) of rules is continually replaced by the GA. Thus in class II the genetic algorithm only generates

useless hypotheses so the rules being used never changes. As in class I, this stability of forecasting

strategies makes the market relatively stable and predictable, as Figure 1 (top) shows. Figure 2 shows

that class II evolution produces simpler strategies. This is probably due to the built-in cost of set

bits, i.e., the evolutionary bias toward simpler strategies. If evolution cannot build useful strategies,

as class II evolution evidently cannot, then simpler strategies should prevail. (We are unsure how to

explain the variation in average �nal wealth seen in the bottom of Figure 1.)

Class III behavior appears when the GA interval is moderately large, roughly 1000 � interval �
10000. The GA is invoked frequently enough for evolutionary learning to signi�cantly improve the

agents' strategies, unlike in the boundary conditions which cannot support evolutionary learning. The

accumulated wealth in Figure 1 (bottom) shows the value of the strategies that evolutionary learning

can produce. Only 4% of the rules are continuously activated|they are the rules that contribute to

the slope 1 line in Figure 3 (bottom)|so the rules the agents actually use continue to evolve over

the course of the simulation. The agents switch their investment strategies, but only relatively slowly.

At the same time, the waiting time between GA invocations is long enough that newly generated
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rules have a relatively long time to prove their worth before they face selection pressure from the

GA. This means that evolutionary learning has an opportunity to discover those forecasting rules

that are successful only in the long run (technical trading rules that identify very long-term trends or

fundamental trading rules that do well only over the long haul). To the extent that agents are using

rules that are successful only over the long haul, their rule use will tend to be fairly stable over time.

This explanation would predict the kind of rough correlation between GA interval and price stream

variance visible in the class III portion of Figure 1 (top), and the agents' risk aversion explains class

III's inverse correlation between price stream variance and average �nal wealth (Figure 1). Evidently,

these rules that focus on the long-term are not especially complex, so the GA bias toward simpler

rules probably explains the relatively low complexity of class III rules (Figure 2).

Class IV behavior happens when the GA interval is moderately small, roughly �1000 � interval �
100. Figure 1 (bottom) shows that agents are able to accumulate some signi�cant wealth, so the

GA interval is not so low that it disables evolutionary learning. Yet the waiting time between GA

invocations is short enough that rules must prove their worth relatively quickly to avoid succumbing

to the GA. This sort of evolutionary learning favors rules that perform well in the short run. As with

class III, only 4% of the rules are continuously activated; Figure 4 (top) shows that the subset of

rules that the agents actually is continually evolving. Agents are switching their investment strategies

relatively quickly. This instability in investment strategies used causes instability in the stock price

(Figure 1 top), and the market becomes less predictable than in any other regime. Given the agents'

risk aversion, this market instability drives the price down (Figure 1 bottom), Figure 2 shows not

only that the rules produced in class IV are relatively complex and use more trading bits than those

in any other class; the complexity of the quickly evolving trading strategies provides enough value to

outweigh the GA's built-in bias toward simple rules. In class IV, and only in class IV, evolutionary

learning supports the emergence of signi�cantly complex strategies, and complex technical trading

strategies in particular.

6 Summary and Conclusion

Varying the interval of the GA in the Santa Fe Stock market results in the appearance of four distinct

kinds of market behavior. These correspond to four di�erent rates of evolutionary learning. Evolu-

tionary learning controls the rate at which agents switch between di�erent rules in the population of

rules. It also a�ects the types of di�erent strategies (technical or fundamental) that evolve over time.

Di�erences between rates of switching between rules and the types of rules that evolve in these classes

lead to di�erences in the volatility of prices, wealth earned by agents, the complexity of strategies,

the types of strategies that evolve in the market over time and the activation history of rules.

At low GA intervals, the frequent switching between strategies as well as the signi�cant usage of

technical trading rules results in high price volatility, increases in the complexity of strategies and

lower overall wealth. At longer GA intervals, the infrequent switching between rules as well as the

lower usage of technical trading rules results in lower price volatility, the usage of strategies of lower

complexity and higher overall wealth. At the boundary conditions the usage of the same pool of rules

over time leads to very low volatility and almost equal usage of technical and fundamental rules.

In conclusion, this paper has classi�ed the various types of behavior in the Santa Fe Stock market

and provided an explanation for the di�erences between observed behaviors. Given the resemblance

of Class IV behavior to real world �nancial markets [4, 12], we hope that our results are also a step

toward explaining the complexity of real world �nancial markets. Current and future work in this

area includes quantifying evolutionary activity in this model using neutral models and evolutionary

activity statistics [5, 6], and also studying the emergence of technical trading in �nancial markets[11].
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Abstract

Genetic algorithms (GAs) have been used extensively in engineering and computer science to

optimize speci�c functions, especially those which exhibit non-convexities and so are not amenable
to calculus-based methods of optimization. A parallel use of GAs has been to solve algorithmic
problems. A third domain in which GAs have been used is that of searching for mappings which

optimize a repeated procedure, which also reveals their complexity. An o�shoot of this has been
their use in what has been called co-evolution of mappings. This paper reports results from a
project in which GAs have been used to, �rst, to derive mappings which may explain the behavior

of brand managers in an oligopolistic retail market for co�ee, second, to attempt to improve on
the historical pro�ts of these brand managers, pitted in weekly competition with each other,
vying for sales and pro�ts with their di�erent brands of ground, sealed co�ee on the supermarket

shelves, and, third, to reveal how the arti�cial agents' performance is positively related to their
complexity. As well as advancing the practice of GAs, with separate populations competing, the
work also advances our understanding of modeling players in repeated oligopolistic interactions,
or games.

1 Introduction

The theory of oligopolistic behavior (that is, the behavior of sellers in a market with a small number

of sellers, but many buyers, so that one seller's actions will a�ect the pro�ts of other sellers, and

vice versa) has mainly been approached from the point of view of searching for Nash equilibria in

players' actions, that is, a combination of actions, where each player's actions are the best he can

do for himself, given that the other players' actions are the best they can do for themselves. Such a

combination is self-reinforcing, since no single player has an incentive to alter his actions.

The project reported here, however, has been concerned with trying to explain and to improve

upon the historical behavior and pro�ts of a group of sellers, as recorded in supermarket scanner data,

and using a market model to predict one-shot (weekly) pro�ts of each player, given the marketing

actions of all players. The data have been described in a recent article[9]. Briey, each player has a

choice of weekly actions: price per pound, coupons, in-store promotional displays, and featured local

advertising. The CASPER market model[2], estimated from historical data, is used to identify each

of the several �rms' weekly pro�ts, given all brand managers' actions.

We modeled the brand managers, the players, as stimulus-response automata[6], where the response

is the player's marketing actions for the next week, and the stimulus is the state of the market this

week, which we took to be a function of all players' actions this week and last week and several weeks

past. The reason we believe that managers remember past actions is that this means they can respond

to movements (aggressive or conciliatory) in other players' pricing.
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For instance, it turns out that historically most prices and most sales have been made when prices

are low. So if one brand, say Folgers, were pricing aggressively low last week, and raises its price this

week, this could be a signal that it is becoming less aggressive, and might like reciprocation from its

rival brands. If the brand managers are able to remember more than two weeks of marketing actions,

then they may respond not just to rising or falling prices of their rivals, but also how quickly these

prices are rising or falling. These issues are explored at greater length in[7].

2 Modeling the Managers

We model each manager as a �nite automaton that responds to the state of the market with a set of

marketing actions. To do this we need a set of rules, which are here represented by a binary string,

following the Axelrod/Forrest representation[1]. Each string becomes an individual in a population

of strings as arti�cial brand managers, and each string's average pro�t after a series of repeated

interactions with the other arti�cial brand managers can be used as its \�tness" for the GA[10].

To be speci�c, say there are p players, each with a possible actions per week, and m weeks of

memory, then the total number of possible states is given by

number of possible states = amp: (1)

This number increases rapidly: with three players, four actions, and one week of memory there are 64

possible states, but increasing memory to two weeks increases the number of possible states to 4,096.

Moreover, the length of the bit-string is only equal to the number of possible states in the unlikely

event that a player can choose only from two possible actions, which can then be coded as zero or

one. If, however, the player can choose from four actions, then the bit length doubles, and from eight

actions it trebles, so that each possible state corresponds to three bits, which code for eight possible

actions.

We are modeling the brand managers as boundedly rational: bounded in terms of their perceptions

of reality, which is really saying that it is costly to perceive reality �nely[7]; bounded in terms of their

memory (which is another way of saying that their perception is limited because costly); and bounded

in terms of the possible actions they can make. None the less, we found that our simple �nite-

automaton arti�cial brand managers could outperform their historical esh-and-blood forbears[9]. In

showing this, we were able to develop strings (using the GA to search through the space of possible

mappings from history to actions) that represented real strategies in asymmetric markets (asymmetric

because the brands historically faced di�erent costs, evoked di�erent responses from customers, and

chose from di�erent sets of possible actions).

This line of research does not merely pit each bit-string against a complex and sometimes noisy

environment, as had been done by others, in looking at arti�cial players in repeated games[1]. We

co-evolved the players, so that each string was being tested for its �tness against the consequences

of other strings, which in turn were being tested for their �tness[5]. This may be a good example of

Szpiro's \sur�ng in a seascape"[12].

2.1 The Agents' Choices

Given the problem of the curse of dimensionality, with rapid growth in the length of the bit strings

modeling the agents, the question at �rst was how could we model the market interactions with the

smallest sacri�ce of realism? We focussed on the three most active brands in the market: Folgers,

Maxwell House, and Chock Full O' Nuts, although later we have increased the number of strategic

players.

We assumed that the decision to use coupons was equivalent to a reduction in price. Moreover, we

chose at �rst to use only four possible prices, instead of the range available to the historical managers

(from $1.50 per pound to about $3.00 per pound). For each of the three players we examined the

historical pricing decisions to arrive at the brand-speci�c sets of four possible prices per player. At the
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same time, realising that other marketing actions (advertising feature and aisle display) were highly

correlated with price, we factored those into the four pricing actions. (Only when the price is low did

the historical players use feature or display, presumably to move more stock at an attractive price;

see [9] for more discussion.)

To begin with, we modeled the players as remembering the actions of all three players of only one

week ago, although this was relaxed later. With three players, each with four possible actions per

week, and one week's memory, equation (1) tells us there are 64 possible states. With four possible

actions, each state must map to two bits on the player's string. When, following [1], we use six bits

for the phantom memory used in the �rst round (e�ectively endogenising the initial conditions of the

simulation), each player is modeled with a 134-bit string. Not only are 134-bit strings easy to simulate,

but the 75 weeks of historical data provided su�cient to evolve e�ective strings of this length.

Although it would have been possible to link the CASPER market model (which derives each

brand's weekly pro�t, given the other brands' actions) to the GA, we found that computing the

market response functions for each iteration of the game took an excessive time, and we had problems

in marrying the compiled CASPER model with the compiled evaluation function of the GA. Moreover,

with only 64 possible states, it seemed more elegant to derive three 4� 4� 4 payo� matrices o�-line

(one per asymmetric brand), and to compile them into the GA as look-up routines. This was done,

although later we would have to increase the dimensions of this array quite considerably.

2.2 The Genetic Algorithm

There is no need to describe the workings of GAs in 1998. There are many books[10, 3] and articles

doing this. Su�ce it to say that in our earlier work[9] we adapted GAucsd, the U.C. San Diego version

of John Grefenstette's GENESIS[11]. We describe below the extensions that we have made to it in

order to examine the phenomena under review.

3 Experiments

The results of the experiments described below are reported in more detail in [9] and [8]. Our purpose

here is to discuss the extensions made to the GAucsd to accommodate our models and the performance

of the arti�cial agents.

3.1 Unconstrained Agents

Despite some expectations that collusion would occur at a high price (price is the most powerful of the

several marketing actions available to the sellers, and we concentrate on it here), we found convergence,

with all brands pricing at their lowest historical prices. This result was consistent with the historical

observation that most sales and most pro�ts occur at low prices with promotions, because of such

behavior as stockpiling and brand-switching. Ground co�ee in vacuum sealed cans has a storage life

of up to seven weeks. Moreover, the historical market was mature, with no external shocks on either

the supply side or the demand side.

3.2 Institutional Constraints

Unfortunately, these results were unrealistic since historically only one brand a week has priced at the

low promotional level to which all brands had converged. The supermarket chain whose scanner data

we were using had managed to maximize its pro�ts while not exhausting demand. Its policy was to

constrain the brands: only one brand promoting with low prices in any week, and no brand promoting

with low prices in two successive weeks.

We mimicked this. Ties in which two or more brands respond to the state of the market via their

mapping strings by both promoting at low prices were broken by random choice, the loser pricing

arbitrarily high. In order to speed up the simulations, we determined that we could examine the
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genotype (the structure of each arti�cial brand's bit-string) to see whether that string's low promotion

price this week would be followed by a similar price next week, rather than waiting for the simulation

to reveal the particular realization of the player's phenotype (its response behavior). This \�ltering"

of strings greatly speeded up the simulation, since strings whose structures revealed illegal successive

promotions were given arbitrarily low �tness, and their characteristics were excluded from future

generations of strings by the GA. After 20 generations (with a population size of 25), most illegal

strings had vanished, and the last had usually disappeared by generation 44.

Although the brands' behavior was closer to that seen historically[9], we found that, because the

market model CASPER had been written and estimated for a single week's interaction, the overall

levels of low, promotional prices were leading, with brand switching, to demand saturation.

3.3 Demand Saturation

While the retail co�ee market is very volatile in the short run, it is very stable in the long run[9].

We pro-rated the weekly total by the degree of over-saturation of the past seven weeks, chosen to

approximate the average interpurchase interval for this product. We �rst calculated the total sales

volume per week, a function of the actions of the three strategic brands and the remaining non-

strategic brands (whose behavior was assumed to be static). We then calculated the average total

sales volume over the previous seven weeks and with a �gure for the historical average total sales

volume in this market calculated the percentage degree of saturation. If this was above 100%, then

the total sales volume for the latest week was reduced by the degree of saturation. (In steady state,

this procedure means that total sales volume must equal the historical average.) Then the pro�ts of

the three strategic brands were reduced from the limits now placed on each brand's sales volume.

The results of this experiment are to be seen in Figure 2 of [9]. The experiment results in a greater

degree of competition than observed historically, owing to the immediacy of the simulation laboratory,

in which brands immediately respond to others' actions last week. The arti�cial brand managers thus

generated average weekly pro�ts from 3.5 to 9.7 times higher than did the historical brand managers.

3.4 Tests Against History

How well had our best arti�cial agents learned (or evolved) to play the game which models the

oligopolistic market for co�ee we are examining? In order to answer this question, we took the most

pro�table agents from the previous series of experiments (after 100 generations of the GA) and tested

each in turn against the historical actions of their two strategic rivals. The historical actions of the �ve

non-strategic brands were also used, but our arti�cial agents as modeled were blind to these actions.

This was achieved by taking a string, designating it as a particular brand, say Maxwell House,

and allowing it to respond to the historical actions of the two rivals brands over a 52-week period of

history. Since the historical brand managers had had a much larger range of prices and other actions

to choose from (although the arti�cial player's range spanned the historical range), we used a rough

partitioning of the historical actions into four intervals, to which the arti�cial agent responded[7]. Its

performance was measured by its average pro�ts over this period, calculated weekly by CASPER,

with the historical actions of the other strategic and non-strategic players as input. Since the GA's

population size was 25, there were 25 possible strings: only later did we separate the players into

distinct populations to be evolved in parallel by the amended GA.

The results are detailed in [9]. For two brands (Folgers and Chock Full O' Nuts) most of the

strings performed better than their historical counterparts did; for Maxwell House only two of the 25

strings did (although they were 20% more pro�table, none the less). Maxwell House historically was

the most pro�table of the three brands, so perhaps the arti�cial agents faced a higher performance

hurdle.

A criticism of this experiment is that it is an \open-loop" regime: although the arti�cial agent

responds to the historical actions, week by week, as it had been bred to do by the GA, the historical

actions are �xed, with no possibility of responding to the arti�cial agent's action last week.
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Another criticism, which we address in Section 3.5 below, is that we were using a single population

of strings in the GA. When the problem is static, a single population of strings provides many possible

solutions (Holland's \implicit parallelism"[4]), but when we engage in coevolution with asymmetrical

players, as here, there is no reason to believe that \one size �ts all", especially since the same state

may best trigger quite di�erent responses in di�erent brands.

Because of these concerns, we concluded that what was impressive about these results was not

that our arti�cial agents could outperform their historical counterparts, but that very simple agents

(with only four possible actions and one week's memory) could generate reasonable performance in

the noisy coevolutionary environment.

3.5 Multiple Population Simulations

As mentioned, despite the fact that we were coevolving asymmetric agents, we | in common with all

other users of the GA | had been using a single population. As well as making it much harder for

the GA to search for �tter mapping strings (consider: a single string might perform well as one brand

but badly as another), a single population means that, through the genetic recombination of the GA,

strings may be communicating genotypically, as well as phenotypically via their �tness (pro�tability)

in the repeated interaction. Tony Curzon Price has called this \incest", in a personal communication.

We have extended GAucsd to include multiple populations of bit strings, so that the �tness of any

string is dependent upon all strings in the other strategic players' populations. As well as making

things less noisy for the GA, having distinct populations means that the strings are interacting only

via their phenotypic behavior, and not at the genotypic structural level, since the populations are

entirely separate, as far as the GA knows.

Amending the GAucsd software was not a trivial exercise, since three or four players may be

interacting many times in determining each string's �tness (its average weekly pro�ts). One of us

(Shiraz) took the opportunity to streamline the logic of the �tness evaluation functions, by recording

the other strings' performances during the round-robin interactions, so that the new code with three

populations is almost as fast as the old code with a single population.

Because of the stochastic nature of the simulations, we have performed Monte Carlo simulations

(50 runs each) to compare the convergence and pro�ts of the common-population GA (25 strings, 50

simulations each) with those of the distinct-population GA (three populations of 25 strings each, 50

simulations each).

Comparing Table 1 with Table 2, we see that the distinct-population GA generates more pro�table

strings and converges faster than does the common-population GA.

In aggregate, the improvements to average weekly pro�t are only about 4%, but this summary

statistic masks interesting brand-speci�c outcomes: with distinct string populations, Folgers' pro�ts

increase by 3% and Maxwell House's by 24%, while Chock Full O' Nuts' pro�ts fall by 16%. Distinct

populations allow the Maxwell House strings to better capitalize on that brand's strengths.

The distinct-population GA allows the brands to di�erentiate themselves more in terms of the pat-

terns of weekly response, as [8] reports. Moreover, when testing strings from the distinct-population

GA against history (see Section 3.4 above), we found that strings coevolved using the distinct-

population GA did better against history than did strings coevolved using the common-population

GA.

Indeed, we conclude that moving to distinct populations has generally resulted in higher-performing

strings, both when coevolving and when competing against the historical actions of brand managers,

and that distinct populations also result in greater heterogeneity in the performance of each brand's

arti�cial agents.

3.6 Four Strategic Players

With the rewritten, multi-population GA code, it was relatively easy to extend the simulations to a

fourth strategic player, at some cost in terms of the complexity of the bit strings, which grew in length
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Actions Action

Low Price High Price Pro�t

Pattern 1 1 2 3 4

21 runsa

Folgers 1* bc 98 0 1 $1,022

Maxwell House 32* 7 14 47 $631

Chock Full O' Nuts 0* 100 0 0 $633

Pattern 2 1 2 3 4

11 runs

Folgers 0* 97 2 1 $1,011

Maxwell House 33* 4 10 53 $625

Chock Full O' Nuts 0* 98 0 2 $630

Pattern 3 1 2 3 4

1 runsd

Folgers 46* 52 0 2 $1,082

Maxwell House 30* 0 34 36 $623

Chock Full O' Nuts 0* 50 0 50 $707

apatterns of competition are computed during the hundredth generation from all combinations of 25 agents playing

52-week games.
brow percentages
casterisks identify the actions constrained by store policy.
dbest performing of remaining patterns.

Table 1: Patterns of competition among evolved agents | common population and 4 actions

Actions Action

Low Price High Price Pro�t

Pattern 1 1 2 3 4

25 runs a

Folgers 1* bc 92 3 4 $1,093

Maxwell House 47* 0 3 50 $804

Chock Full O' Nuts 2* 91 3 4 $527

Pattern 2 1 2 3 4

16 runs

Folgers 1* 94 2 4 $1,092

Maxwell House 47* 1 3 48 $804

Chock Full O' Nuts 1* 91 3 4 $527

Pattern 3 1 2 3 4

1 run d

Folgers 2* 92 0 6 $1,045

Maxwell House 46* 0 4 50 $830

Chock Full O' Nuts 48* 44 4 4 $580

apatterns of competition are computed during the hundredth generation from all combinations of 25 agents playing

52-week games.
brow percentages
casterisks identify the actions constrained by store policy.
dbest performing of remaining patterns.

Table 2: Patterns of competition among evolved agents | 3 distinct populations and 4 actions
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Folgers Maxwell House Chock Full O' Nuts
Action Price Feature Display Price Feature Display Price Feature Display

1 *$1.87a *95 *69 *$1.96 *95 *69 *$1.89 *100 *77
2 $2.07 83 0 $2.33 83 0 $2.02 100 65
3 $2.38 0 0 $2.46 0 0 $2.29 0 0

4 $2.59 0 0 $2.53 0 0 $2.45 0 0

1 *$1.62 *67 *67 *$1.60 *97 *97 $1.64 0 0

2 *$1.83 *97 *96 *$1.87 *94 *91 *$1.89 *97 *97
3 $1.96 0 0 *$2.06 *88 *76 *$1.89 *98 *29
4 *$2.03 *79 *77 $2.33 79 0 $2.01 0 0

5 *$2.04 *85 *0 $2.38 54 0 *$2.02 *97 *62
6 $2.22 96 33 $2.52 0 0 $2.31 0 49
7 $2.57 0 0 $2.53 0 53 $2.33 0 0

8 $2.78 0 0 $2.59 0 13 $2.49 0 0

aAsterisked actions are subject to store policy.

Table 3: Sets of four and eight possible actions.

from 134 bits (three players, four actions, one-week memory) to 520 bits (including the initial week's

phantom memory).

Although Hills Bros., the fourth player, was a niche player, with smaller pro�ts than the other

brands, its inclusion results in signi�cant and complex changes in the behavior and pro�tability of the

three major brands. The details can be read in [8]. The impacts were greater than we had anticipated,

but our approach allows us to analyze the changes using a methodology based on a detailed, realistic,

and empirically grounded model of consumer response.

3.7 Eight Actions per Player

We had chosen the number of four possible actions per player for convenience in our initial work, but

were pleased with the results we obtained with our constrained strings none the less. But rather than

exogenously imposing our decisions on the arti�cial managers, we would prefer them to learn which

actions were most pro�table, given the actions of their rivals. By increasing the number of possible

actions to eight, we hoped to give the arti�cial managers the opportunity of demonstrating that the

four actions used previously were robust, and that our assumption of a mature oligopoly was correct.

Table 3 shows the four and eight possible actions by speci�c player.

Doubling the number of possible actions implies further complexity: from 520 bits per string to

12,312 bits per string. Of each brand's eight actions, we chose six from an historical analysis, to

which we added the brand's highest observed price and lowest promotional price, thus providing each

arti�cial manager with a much richer set of possible actions than previously.

Although in early generations of the GA simulation each of the eight actions is used with a similar

frequency, by the hundredth generation (25 individuals per population) the arti�cial managers fall

into one of two patterns of competitive interaction, as revealed by 50 Monte Carlo runs, both of which

employ many fewer than eight actions. See Tables 4 and 5.

The managers have learnt the two or three actions that are most pro�table for them, given the

behavior of their rivals. Against the historical actions of actual brand managers, the arti�cial managers

do at least as well as their historical counterparts. See [8] for details.

3.8 Co-evolution: Sophisticates against Primitives

Unlike the use of GAs to solve static problems, where the �tness scores of the simulation improve as

generations pass, when the strings model arti�cial managers competing against other evolving arti�cial

managers | co-evolution | �tness scores may not improve from generation to generation. Rather
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Actions

Low price High Price

Patterna 1 2 3 4 5 6 7 8

Folgers *8 bc *7 11 *8 *6 13 11 36

Maxwell House *6 *7 *6 15 12 13 12 29

Chock Full O' Nuts 11 *7 *6 13 *7 13 12 31

apatterns of competition computed over the �rst four generations of one simulation.
brow percentages total to 100%
casterisks identify the actions constrained by store policy

Table 4: Frequency of actions over the �rst four generations

Actions

Low price High Price

Pattern 1 1 2 3 4 5 6 7 8

27 runs a

Folgers *20 bc *3 11 *20 *1 25 1 20

Maxwell House *3 *1 *3 61 2 12 2 15

Chock Full O' Nuts 3 *34 *0 10 *0 8 4

Pattern 2 1 2 3 4 5 6 7 8

14 runs

Folgers *27 *7 11 *5 *0 31 1 18

Maxwell House *1 *1 *3 66 9 8 5 8

Chock Full O' Nuts 1 *30 *0 *7 1 11 4

apatterns of competition are computed during the 100th generation from all combinations of 3 by 25 agents playing

52-week games.
brow percentages total to 100%
casterisks identify the actions constrained by chain policy.

Table 5: Frequency of actions during the hundredth generation

than engaging an evolved string in the open-loop competition against the frozen patterns of behavior

of its historical rivals, as reported in Section 3.4 above, we take a string (the \sophisticate" from the

hundredth generation and play it against rival strings (the \primitives" from the eighth generation.

Table 6 presents the results.

Since the sophisticates have had many more generations to learn and adapt than have the primi-

tives, we should expect them to score better against primitive than against sophisticated rivals. But,

using the original three brands and 50-run Monte Carlo simulations, we found that for two of the three

brands the sophisticates do not compete e�ectively with the primitives, a phenomenon that Bernhard

Borges has dubbed the Holy�eld-Tyson e�ect.

Is this due to genetic drift, where the gene pool of a small population may change randomly,

when speci�c genes (positions on our strings) are not useful in scoring well? To test this conjecture,

we increased the size of each population from 25 to 250, which means that each string now has to

Best Change in Change in Change in

Sophisticate Folgers Maxwell House Chock Full O'Nuts

Folgers �15:01 41.42 42.03

Maxwell House 2.03 �20:04 37.77

Chock Full O'Nuts 13.93 �28:99 82.34

Table 6: Mean changes in average weekly pro�ts with best sophisticate
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Best Change in Change in Change in

Sophisticate Folgers Maxwell House Chock Full O'Nuts

Folgers �87:11 75.13 �55:66
Maxwell House �101:87 �512:51 155.45

Chock Full O'Nuts �63:19 �42:08 �23:77

Table 7: Mean changes in average weekly pro�ts with best sophisticate after 160 generations, popu-

lation of 250

compete against 2502 combinations, instead of 252, and there are ten times as many strings to test,

a thousand-fold increase in the number of three-way interactions per generation. Convergence is also

likely to be much slower. We did not attempt Monte Carlos: a single simulation run took weeks rather

than hours to complete. Table 7 presents the results.

The results of our large-population simulations [8] appear to eliminate genetic drift as an ex-

planation, but, given the length of the cycles of convergence, we cannot rule out the emergence of

higher-performing sophisticates after the hundredth generation. Moreover, we were able to in the

time available to examine a model with three players and four possible actions. Would an eight-action

model, allowing the arti�cial agents greater degrees of freedom as discussion in Section 3.7 above,

demonstrate genetic drift? Our prior is no.

4 Conclusions

Although we believe that our papers provide much insight into the historical patterns of oligopolis-

tic rivalry in a mature market, as well as revealing how historical brand managers might learn to

improve their pro�tability and competitiveness by consideration of the patterns and strategies learnt

by the arti�cial brand managers via the GA simulation of coevolution, we have focussed here on our

contributions to the use of GAs in competition analysis.

We have shown that it is possible and appropriate to use multi-population GAs when co-evolving

asymmetric arti�cial agents. We have shown that the GA can e�ectively used for bit-string agents of

very high complexity. We have shown the potential of GAs to be used in exploring the patterns and

strategies of asymmetrical rivals in a mature oligopoly.

References

[1] R. Axelrod. The evolution of strategies in the iterated prisoner's dilemma. In L. Davis, editor,

Genetic Algorithms & Simulated Annealing. Pittman, London, 1987.

[2] L.G. Cooper and M. Nakanishi. Market Share Analysis: Evaluating Competitive Marketing Ef-

fectiveness. Kluwer, Boston, 1988.

[3] D.B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine Intelligence. IEEE

Press, New York, 1995.

[4] J.H. Holland. Adaptation in Natural and Arti�cial Systems. MIT Press, Cambridge, second

edition, 1992.

[5] R.E. Marks. Breeding optimal strategies: optimal behavior for oligopolists. In J. David Scha�er,

editor, Proceedings of the Third International Conference on Genetic Algorithms, pages 198{207,

San Mateo, Calif., June 1989. George Mason University, Morgan Kaufmann Publishers.

[6] R.E. Marks. Repeated games and �nite automata. In J. Creedy, J. Eichberger, and J. Borland,

editors, Recent Developments in Game Theory, pages 43{64. Edward Elgar, London, 1992.



Robert E. Marks, David F. Midgley, Lee G. Cooper and G. M. Shiraz 345

[7] R.E. Marks. Evolved perception and behavior in oligopolies. J. Economic Dynamics and Control,

22(8{9):1209{1233, July 1998.

[8] R.E. Marks, D.F. Midgley, and L.G. Cooper. Re�ning the breeding of hybrid strategies. Aus-

tralian Graduate School of Management Working Paper, Sydney, 1998.

[9] D.F. Midgley, R.E. Marks, and L.G. Cooper. Breeding competitive strategies. Management

Science, 43(3):257{275, 1997.

[10] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, 1996.

[11] N.N. Schraudolph and J.J. Grefenstette. A user's guide to GAucsd 1.4. Technical Report CS92-

249, UCSD CSE Department, La Jolla, CA, 1992.

[12] G. Szpiro. The emergence of risk aversion. Complexity, 2:31{39, 1997.



346 The Application of Cellular Automata to the Theory of Consumers' Learning. . .

The Application of Cellular Automata to the Theory of Consumers'
Learning and Behavioral Interdependence

Sobei H. Oda

Faculty of Economics,

Kyoto Sangyo University,

Motoyama, Kamigamo,

Kita-ku, Kyoto 603, Japan

oda@cc.kyoto-su.ac.jp

Kouhei Iyori

Graduate School of Science

and Technology,

Kobe University,

1-1 Rokkodai-cho,

Nada-ku, Kobe 657-8501,Japan

iyori@mi-2.mech.kobe-u.ac.jp

MIURA Ken

Graduate School of Science and

Technology,

Kobe University,

1-1 Rokkodai-cho,

Nada-ku, Kobe 657-8501,Japan

miuraken@mbox.kyoto-inet.or.jp

Kanji Ueda

Faculty of Engineering,

Kobe University,

1-1 Rokkodai-cho,

Nada-ku, Kobe 657-8501,Japan

ueda@mech.kobe-u.ac.jp

Abstract

This paper describes competition between such products as operating systems or applications
for which demand is crucially a�ected by network externalities and consumers' learning by doing.
In fact consumers' reservation prices for such products seem strongly depend on how long they have

used (consumers' learning by doing) and how many of others will use them (network externally).
By giving memory to each cell and introducing a rivalling product to the Cellular automata
model of Oda[3], this paper presents a CA+Agent model and results of its simulations. Among

them: that only one product may survive competition for most initial conditions if consumers'
reservation prices for products do not increase very much by learning; that very small di�erence
in the initial condition may change the �nal winner.

1 Introduction

When you buy an application, you may probably take account of how long you have used it and

how many of others will use it. Even if an application with higher performance is available, you may

hesitate to change it from the one you are familiar with, suspecting understandably that mastering a

new application may require considerable time and e�ort. You may however abandon the use of your

favorite application if increasingly many your friends and colleagues use another one, fearing naturally

that adhering to it may make it di�cult to exchange data and programs with others. We should like

to examine such markets where consumers consider these things: consumers' learning by doing and

network externalities, which are not taken into account in the standard consumer's theory but can be

crucial in the so-called information-oriented society.

Our analytical tool is computer simulation as in our previous work (Oda et al [3]), which examines

how the consumption of a commodity di�use if there are network externalities among consumers'

utility. The model of this paper is a generalisation of the previous cellular automata model. In fact,

apart from probabilistic determination of each consumer's neighbourhood (Markus and Hess [2]),

we have only introduced two factors to the CA model: that there exist two rivalling products or

services and that consumers' reservation prices for them increase as they use them longer. The latter

makes our model comparable to CA+Agent models (Epstein and Axtell [1]) rather than the life game

(Poundstone [4]), where each cell simply reacts its neighbouring cell's action in the previous period.
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Although they do not move around, cells of our model are agents which have memory to represents

their skill for using each product acquired from their experience,

We shall explain our model in Section 2 and mention a few results of its simulation in Section 3. The

chief concern of this paper is to detect so-called buttery e�ects, or such cases where small di�erences

in the initial conditions results in the large divergence of the �nal state. To put it concretely, we shall

examine some cases whose initial condition are slightly di�erent from one another on the assumption

that every consumer gains the same utility from either product if his or her experience and the number

of his or her neighbours who use it are the same.

We shall �rst examine cases where each consumer's reservation price for either product is a�ected

only by the number of his or her neighbours who used it in the previous period. This is the same

setting as in our previous paper except that there are two rivalling products. We shall show some

results of simulations to demonstrate that at least for certain combinations of parameters only one

product can survive in the long run: if the sales of two products increase almost at the same rate

till every consumer buys either product, after that the sales of a product gradually decrease to zero

while the market share of the other product increases to one hundred percent. Although it might be

determined theoretically which product is the �nal winner at the initial point in time, it is virtually

impossible to predict which is in the di�usion process, not to mention at the initial time.

We shall then introduce consumers' learning by doing (using). Each consumer now has incentive

to continue to a product he or she has used if he or she is surrounded by users of the other product. It

increases, as is readily imagined, the probability that both products coexist in the long run. Actually

this may give an explanation for why the Beta system has driven out of the market for home video

tape recording exhaustively by the VHS system, while Mac OS still survives under the dominance of

Microsoft Windows. However, even in the circumstances, small changes in the initial condition and

the value of parameters can drastically a�ect the long-run shares of both products. We shall show

some results to suggest it.

In the last section, we shall briey mention the generalisation of our model and analysis. Since the

model of this paper contain much more parameters than that of the previous paper, we have checked

simulations only for limited combinations of parameters for rather restrictive purposes. We shall refer

to some generalisation and simulations which we are making or planning.

2 The model

Let us suppose that there are M2 consumers in a closed society. Every consumer has a personal

computer for which two operating systems are available. To use an OS, each consumer must make a

new or renewal contract at the beginning of a week (time t) with the �rm which supplies it through

networks for the week (Week t). We designate X(m;n; t) = 1 if Consumer m (m = (m1;m2),

1 � m1 � M and 1 � m2 � M) contracts with the supplier of OSn (n = 1 or 2) for Week t

(t = 0; 1; 2; : : :) and X(m;n; t) = 0 if he or she does not.

Let us de�ne the utility which Consumer m obtains from using his or her computer for Week t as:

U(m; t) = max
n2(1;2)

(X(m;n; t)U(m;n; t) + �X(m; 3� n; t)U(m; 3� n; t)) (1)

where � is a constant (0 � � < 1) while U(m;n; t) represents Consumer m's utility from using

only with OSn. In other words: U(m; t) = 0 if X(m; 1; t) = X(m; 2; t) = 0; U(m; t) = U(m; 1; t)

if X(m; 1; t) = 1 and X(m; 2; t) = 0; U(m; t) = U(m; 2; t) if X(m; 1; t) = 0 and X(m; 2; t) = 1;

U(m; t) = U(m; 1; t)+�U(m; 2; t) if U(m; 2; t) � U(m; 1; t) and X(m; 1; t) = X(m; 2; t) = 1; U(m; t) =

U(m; 2; t) + �U(m; 1; t) if U(m; 1; t) < U(m; 2; t) and X(m; 1; t) = X(m; 2; t) = 1. Here the �rst case

presumes that only with an OS each consumer can use his or her computer for himself or herself

and exchange information with others through networks. The last two cases presuppose that some

applications run under either OS so that using two operating systems are not twice as useful as using

one.
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We assume that consumers' utility from using a �rm's applications consists of three terms:

U(m;n; t) = Umin + �(Umax � Umin)L(m;n; t) + (1� �)(Umax � Umin)N(m;n; t) (2)

where Umin, Umax and � are given constants (0 � Umin � Umax and 0 � � � 1).

The �rst term Umin stands for the basic utility that a beginner can readily obtain from standing

alone computer usage.

The second term �(Umax � Umin)L(m;n; t) represents the e�ect of consumers' learning by doing:

one can obtain more utility from the same OS as he or she uses it longer. Here L(m;n; t) stands for

the skill for using OSn that Consumer m has acquired till time t, which is de�ned as:

L(m;n; t)

�
= L(m;n; 0) for t = 0

= �
Pt

k=1(1� �)kmax(X(m;n; t� k); �X(m; 3� n; t� k)) for t � 1
(3)

where � and � are given constants (0 � � � 1 while L(m;n; 0) are all given as initial conditions

(0 � L(m;n; 0) � 1). That is to say, L(m;n; t) increases by �(1 � �)k if Consumer m used OSn

k weeks before, while the experience of using the other OS is counted as 100� percent of that of

using OSn.1 Here � represents the speed of skill depreciation: the greater it is, the sooner acquired

skill become obsolete or is forgotten. In addition, since as is readily checked 0 � L(m;n; t) � 1

limt!1 L(m;n; t) = 1 if X(m;n; 0) = X(m;n; 1) = : : : = 1 and limt!1 L(m;n; t) = 0 if X(m;n; 0) =

X(m;n; 1) = : : : = 0, we can can regard the second terms as the product of the degree of skill

accumulation L(m;n; t) and its absolute weight on the total consumer's utility �(Umax � Umin).

The third term (1� �)(Umax � Umin)N(m;n; t) stands for the e�ect of network externality, which

is determined by

N(m;n; t) =

P
i2
(m)max(X(i; n; t); X(i; 3� n; t))

j
(m)j : (4)

Here  is a given constant (0 �  � 1); 
(m) represents the set of Consumer m's virtual neighbours:


(m) = fConsumer ijdis(i;m) < Rg (5)

where R is a given constants (1 < R); j
j stands for the number of Consumer m's neighbours. The

economic reasoning behind these expressions is as follows. Even if a consumer can freely exchange

data and programs and communicate with anyone else, he or she will do so only with those who share

similar interests. We have thus assume that Consumer i may exchange information with his or her

neighbours in the virtual space of networks.2

The economic reasoning behind these expressions is as follows. Even if a consumer can freely

exchange data and programs and communicate with anyone else, he or she will do so only with those

who share similar interests. We have thus boldly assume that Consumer i may exchange information

with his or her neighbours in the virtual space of networks.3 Needless to say virtual neighbours may

not be actual neighbours and vice versa; an actress may regard another company's director as her

virtual neighbour whine not considering her neighbour economist so.

1A few remarks. First in addition to skill accumulation those who have a stock of data and programs they have made

on an OS have a reason for continuing to use it. The increase of L(m;n; t) by the past use of OSn may be considered to

reect it. Secondly 0 � � � 1 if the experience of an OS does not hinder learning and using another OS. The authors

who are long Macintosh users know it is not always the case.
2A few remarks: Strictly speaking, the de�nition of 
(m) is more complicated: adopting the method of Markus and

Hess (1990), we assume that those cells which are partially covered by the disk whose center is m and whose radius is

R stochastically belong to 
(m). The introduction of probability to the de�nition of the margin of neighbourhood may

have changed some properties of the CA model of Oda et al (1997); see the next section. Secondly it is assumed that

a consumer regards him/herself as his/her neighbour. Although we have not made simulations on the assumption that

he or she does not for the present model, we have checked the previous model. The results of simulations suggest that

it would not make any di�erence in qualitative terms whether consumers count themselves as their neighbours or not,

though it can make the results of individual simulations quite di�erent.
3It is assumed in the text every consumer regards him/herself as his/her neighbour. Though having made simulations

under the condition that he or she does not, we have not yet found any signi�cant di�erence in qualitative terms.
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We can �nd some similarities in the second and the third term. First, since 0 � N(m;n; t) � 1,

we can regard the third term as the product of the degree of network externality N(m;n; t) and its

absolute weight on the total consumer's utility (1 � �)(Umax � Umin). (As is readily understood, �

and 1� � represent the relative importance of the e�ect of skill accumulation and that of the e�ects

of network externality.) Secondly, � and  play a similar role: � is smaller if consumers can use both

operating systems in a more similar way, while  is smaller if users of di�erent operating systems can

more easily and completely transmit information between them. Thirdly, 
(m) corresponds to �: the

former sets the contemporary boundary to network externality while the latter limits the bene�t from

past experience.

In theory at time 0 Consumermmight be able to determineX(m;n; k) for all n and k (k = 1; 2; : : :)

to maximise the present value of his or her surplus:
P

1

k=0(1+ r)
k(U(m; k)�C(m; k)) where r stands

for the interest rate while C(m; k) stands for the cost which Consumerm must pay at time k according

to the value of X(m;n; k). In practice, however, at the beginning of Week t Consumer m must �nd it

di�cult to see his or her utility for the week U(m; t), because it contains N(m;n; t), which depends on

his or her neighbours' X(i; n; t) (i 2 
(m)), which they cannot determine optimally without knowing

the behaviour of their neighbours (including Consumer m's): X(m;n; t) (i 2 
(
(m))), . . . .

Let us assume not the hypothetical auctioneer or consumers' unbounded rationality but a simple

adaptive behaviour: consumers calculate N(m;n; t) on the supposition that X(i; n; t) = X(i; n; t� 1)

for all i 2 
(m). In other words we assume that at time t Consumer m expects the following utility

for Week t:

N̂(m;n; t)

(
= N̂(m;n; 0) fort = 0

=

P
i2
(m) max(X(i;n;t�1);X(i;3�n;t�1))

j
(m)j
fort � 0

(6)

Here N̂(m;n; 0) are given as initial conditions (0 � N̂(m;n; 0) � 1). We also de�ne Û(m;n; t) by

replacing N(m;n; t) with N̂(m;n; t) in 2 and Û(m; t) by replacing U(m;n; t) with Û(m;n; t) in 1.

Having seen how consumers expect their weekly utility at the beginning of each week, we may now

consider their costs. Although there are some formulations of C(m; t) which can be made only in a

CA+Agent model (see the last section and Appendix Two, where some results of simulations with

such formulations are mentioned), we simply assume the following in the text:

C(m; t) = X(m; 1; t)P1 +X(m; 2; t)P2 (7)

where Pn is a positive constant that represents the weekly rent for OSn. In other words we assume

that rents which are assumed to be constant through time are the only cost for using computers; all

applications are free or bundled with operating systems.

We can now explain consumers' weekly decision-making. At time t Consumer m calculates:

V̂ (m;n; t) = Û(m; t)� C(m; t) (8)

for all the four possible combination of the value of X(m; 1; t) and X(m; 2; t): (0; 0), (0; 1), (1; 0) and

(1; 1), and chooses the combination that maximises V̂ (m;n; t) as (X(m; 1; t), (m; 2; t)).

3 Simulations

We shall show some results of simulations. Having made a number of simulations with di�erent value

of parameters and initial conditions and checked general tendencies, we shall show some results of

simulations only for the following value of parameters and initial conditions in this section: M = 50,

P1 = P1 = 0:25, R = 2, Umin = 0:2, Umax = 0:4, � = � =  = 0, � = 0:5 and L(m;n; 0) = 0:5 for

all m and n. In other words, we show some results of simulations for di�erent value of � and the sets

of initial uses of OS1 and OS2: I(1) = fmjX(m; 1; 0) = 1g and I(2) = fmjX(m; 2; 0) = 1g. Here we
assume that I(1) \ I(2) = ;.
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For convenience we de�ne new symbols: X(n; t) stands for the number of OSn users for Week

t (X(n; t) =
P

all mX(m;n; t)) while X(n)� represents the number of OSn users in the long-run

equilibrium X(n)� = limt!1X(n; t) if it exists.

3.1 Examples 1 and 2: cases where � = 0 and I1 6= ; = I2

These are cases where there exists only OS1 (because as is readily checked X2(t) = 0 for all t � 0)

and consumers do not accumulate skill by using computers (because � = 0). That is to say, this is a

case examined by Oda et al [3].

Examples 1 and 2 describe how X(1; t) changes from slightly di�erent I(1): I(1)1 and I(1)2
respectively.4 Here all initial users of OS1 in Example 1 are its initial users in Example 2: I(1)1 �
I(1)2.

From the �gures of examples we can see that small di�erences in initial conditions may result in

large di�erence in the long-run consequence: X(1)� changes from zero to the total population 2 if I(1)

changes from I(1)1 to I(1)2.

This is so-called buttery e�ect, which is also observed by Oda et al [3]. A few remarks may

be called for. Although 0 < X(1)� < M2 for a certain range of X1(0) in the examples of Oda et

al [3], there does not exist a range of X1(0) resulting in 0 < X(1)� < M2 in the examples above.

It is partially because of the di�erence in the value of parameters; even in the present model the

range exist for other combinations of the value of parameters. Another reason is that the margin

of neighbourhood statistically changes in the present model so that clusters of users cannot remain

separated in the long run from nearby clusters of users.

3.2 Examples 3, 4 and 5: cases where � = 0, I1 6= ; and I2 6= ;

These are cases where there exist two rivalling operating systems: OS1 and OS2. Since all the

parameters are common to both operating systems, their success or fail in the market depends on the

initial distribution of users I(1) thoroughly.

Examples 3, 4 and 5 describe how X(1; t) and X(2; t) changes from slightly di�erent I(2): I(2)3,

I(2)4 and I(1)5 respectively. Here I(1) = I(2)3 in all the three examples and I(2)3 � I(2)4 � I(2)5.

In addition, although it is not shown graphically if I(1) = ;. That is to say, we examine three cases

where either OS is di�used to be dominate the whole market if the other OS does not exist.

The �gures of the examples unmistakably show that the long-run consequence can change drasti-

cally if the initial distribution of users slightly alter: OS1 takes all the market if I(2) = I(2)3; OS1

and OS2 share the market I(2) = I(2)4; OS2 monopolises the market if I(2) = I(2)5. A similar note

to Subsection 1 may be mentioned here. The �nal patterns of OS1 users and OS2 users of Example

4 is rather simpler than the �nal user-non-user patterns mentioned by Oda et al [3]. It is partially

because of the di�erence in the value of parameters; even in the present model the �nal patterns can

be more complex for other combinations of the value of parameters and initial conditions. In addition

the vibrating margins of neighbourhood makes the frontier of the users of di�erent operating systems

smoother.

In particular Example 3 may be noteworthy. OS1 users and OS2 users rapidly increase almost at

the same rate till every consumer uses either product, but then the former gradually decrease and

disappear in the end. Nevertheless neither products' properties nor consumers' behaviour has changed

when the market is saturated. Both the rapid di�usion of OS1 and its fade-out are explained by the

same value of parameters and the same utility functions, for which OS1 is destined at the initial point

in time.

4
I(n)l means that the initial distribution of OSn users in Example l.
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3.3 Examples 6, 7, 8, 9 and 10: cases where � = 0:02

Let us consider cases where consumer can make better use of an operating system as they use it longer.

Examples 6, 7, 8, 9 and 10 correspond to Examples 1, 2, 3, 4 and 5 respectively.

From these examples we can see that the introduction of consumers' learning by using decrease

both probability and e�ect of buttery e�ect. As the result, the probability that 0 < X(1)� < M2 for

I(2) = ; as well as 0 < X(1)� < M2 and 0 < X(2)� < M2 for I(2) 6= ; increases.
If I(2) = ; and � = 0:02, it is scarcely observed thatX(1)� = 0. This is because two consumers who

are neighbours each other can continue to use the same OS if they are surrounded by non computer

users; in the circumstances their reservation price for the OS can be positive for ever (see Example 6).

Certainly they may abandon it if they are encompassed by uses of the other OS; even if they can

receive positive surplus from continuing to use the same OS, they can gain more surplus from using

the other one (see Examples 8 and 10).

However if an OS is inferior in the number of users, some of the users may make a small cluster.

Such an island of users is encroached by the dominant OS users and disappears in the long run if � = 0

(Example 5). Nevertheless it can survive if � = 0:02 (Example 9). With small network externality

consumers continue to use the same OS.

4 Concluding Remarks

We have not exhaustively examined our CA+Agent model yet. We are now making simulations for

di�erent value of parameters and initial conditions.

As to the generalisation of the model, we are considering to introduce changes in weekly rents

for operating systems Pn. There certainly exists increasing return (decreasing average cost) in the

production of an operating system: in comparison with the cost for making a new operating system

and its updating, additional expenditure for having another consumer use it is considerably small.

Hence a smaller rent can be imposed on an OS which will be used in a longer period by more people

to collect its production cost.

In addition our CA+Agent model can describe local increasing return, which cannot be done by

aggregate models. To use a computer not only an OS but applications are necessary. However, one

need not buy or rent all applications; people have only to use those applications which are necessary

for what they want to do. This implies that the computer user's cost C(m; t), or the cost for using

operating systems and applications, may most probably di�er from user to user. Yet it may not be

very di�erent among virtual neighbours who are supposed to share similar interests and exchange data

and programs frequently. We have already developed a CA+Agent model to describe such situation

and making simulations.
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A Appendix

Let us assume that OS2 is an all-purpose operating system while OS1 is designed for a special purpose.

In the circumstances, although the determining equation of U(m; 2; t) can be common to all consumers,

U(m; 1; t) may probably di�er from person to person: those who (do not) use a computer for the special

purpose will (not) prefer OS1. In this appendix, to describe such cases, let us assume that U(m; 2; t)

is determined by (2) while Umax is not common to all m = (m1;m2) for OS1. To put it concretely,

we assume that Umax(m
1) < Umax(m

2) if jm2
1 � M

2
j < jm1

1 � M
2
j (all the other parameters including

Umin are assumed to be constants common to OS1 and OS2).

Examples 11 and 12 show the basic e�ect of this modi�cation. Example 11 show the case where

both U(m; 1; t) and U(m; 2; t) are determined by (2). The initial condition is chosen that both OS

equally share the market in the long run. Example 12 represents the case where U(m; 1; t) di�ers from

person to person. We can see rough gray-black-gray strives in the �nal map of the market; which

is the natural result of the above-mentioned modi�cation of Umax in the determination equation of

U(m; 1; t). A general tendency which might be less apparent a priori, is that the �nal share of OS1

is larger. Although maxm U
1
max(m) � U2

max = U2
max � minm U

1
max(m), the modi�cation is usually

favourable to OS1.

Examples 13 and 14 explain the advantage of a purpose-built product too. They both show

the dynamics from the same initial condition. Example 13 is the case where OS1 is an all-purpose

operating system like OS2; the number of the initial OS1 users is so small that OS1 users disappear

in the long run. Example 14 is the case where OS1 is a purpose-designed operating system. Unless

the number of the initial OS1 users is excessively small (Example 15), core OS1 users survive in the

long run.

On the other hand Examples 16, 17 and 18 suggest the disadvantage of a purpose-built product.

Examples 16 and 17 show the dynamics from the same initial condition. Example 16 is the case where

OS1 is an all-purpose operating system like OS2; the number of the initial OS1 users is so large that

OS1 monopolies the market in the long run. Example 17 is the case where OS1 is a purpose-designed

operating system. The existence of users who can only �nd marginal bene�t from using OS1 prevents

OS1 from monopolising the market. To monopolise the market, the number of the initial OS1 users

must be much larger; see Example 18.
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Abstract

The paper presents an evolutionary dynamic economic model based on von Neumann's work.
Von Neumann's balanced growth solution is shown to be the long time average behaviour of the
dynamic system, and that growth is found to be constrained by the productivities of key processes,

called the generators of the economy. Some discussion is given about how to implement this model
using the Ecolab modeling tool.

1 Introduction

In [8], I argue for an evolutionary economics model similar to the Ecolab model described in [10,

7]. Whilst current state of the art economic models are static equilibrium models, in recent times

dynamic models incorporating nonequilibrium economics and chaos have become feasible. However,

these models have a large number of �xed (and possibly unknowable) coe�cients that make them

problematic. By allowing for the evolution of these coe�cients, one should be able to qualitatively

model aspects of real economies. The contributions that evolutionary thinking can make to economic

theory have been expanded in a sequel to [8], due to appear shortly[9]. This paper introduces the

model de�ned in that paper, and then links it to the Ecolab software.

2 Building an Economic Dynamics

Many inferential similarities can be drawn between the biological evolutionary model of Ecolab and

the processes of a capitalist economy. The obvious analogy for a biological species is a product, and

for Darwinian evolution the process of technological change. I consider a model economics (Econolab)

based on the insights of von Neumann, one of the founders of complexity theory, who introduced von

Neumann Technology in the late 1930s[11, 12]. In this model economy, there is a set of commodities

labeled i 2 N = f1 : : :Ng), and a set of technologies or processes labeled m 2 M = f1 : : :Mg. Each
process has an activity zm, input coe�cients ami and output coe�cients bmi, such that in one time

step, amizm of commodity i (amongst others) is consumed to produce bmjzj of commodity j (amongst

others). The coe�cients ami and bmi may be zero for some values of m and i, corresponding respec-

tively to processes that do not require a particular input, or do not produce a particular output. This

di�ers from von Neumann's original approach, and is more in line with that of Kemeny, Morgenstern

and Thompson[6]. Blatt[2] gives a good introduction to this model, discussing it exibility in dealing

with a range of economic processes. In the words of Blatt (p67):

The von Neumann work is a great achievement of mathematical model building in dynamic

economics. It is the best available theory of capital and of rate of return.

To relate this work back to the Ecolab ecological model, the input/output coe�cients ami/bmi are

�xed like the ri, �ij in the Ecolab model, and zm is a free variable like ni. In von Neumann's work,

the dynamics is imposed in the form of an exponential growth condition:

zm(t+ 1) = �zm(t) 8m 2M (1)
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Rather than assuming a particular form for the dynamics, we should be looking for a �rst order

di�erential equation (or its di�erence equation equivalent) that describes the dynamics. Consider the

capital Km associated with process m. The rate of change of this capital may be written:

_Km = zm

 
NX
i=1

bmipi �
NX
i=1

amipi

!
(2)

assuming the market clears perfectly, where pi is the price of commodity i. This has introduced two

new sets of free variables Km and pi, for which we need to �nd closure relations. Clearly, activity is

limited by the availability of capital (we do not allow the possibility of credit here):

NX
i=1

amipizm � Km (3)

For simplicity, let us assume that each process invests a �xed proportion of its capital into pro-

duction, i.e.
NX
i=1

amipizm = �mKm; 9�m : 0 < �m � 1 (4)

Substituting (4) into (2) gives

_zm = �m

 PN
i=1 bmipiPN
i=1 amipi

� 1

!
zm: (5)

If price is a �xed quantity (as assumed in von Neumann theory) then (5) is equivalent to the ansatz

(1).

Now the price acts like a regulator in the economy. Here I draw inspiration from the thermostat

of Nos�e and Hoover[3] that regulates the temperature of a non-equilibrium steady state system in a

heat bath:

_pi = �i

�
demand

supply
� 1

�
pi = �i

 PM
m=1 amizmPM
m=1 bmizm

� 1

!
pi: (6)

von Neumann assumes that demand never exceeds supply, and if supply exceeds demand (i.e. a

surplus), then the commodity is free (pi = 0). This would imply _pi = 0, freezing prices. In e�ect this

makes the system very sti� | equation (6) softens the dynamics with �i controlling the sti�ness.

This does beg the question of how demand can exceed supply, yet still be satis�ed. It is analogous

to a species population density exceeding the ecosystem's carrying capacity in Ecolab. The above

model really presupposes the existence of reservoirs of commodities (rather like the EU grain and

beef mountains), that can also take care of surpluses, in an analogous way that the heat bath acts as

a source and sink of heat in a thermodynamic system. This may not be true of all markets, but is

certainly valid in some. The parameters �i scale between the situation of large reservoirs which would

would have soft dynamics and the situation of small to non-existent reservoirs which would have sti�

dynamics.

Kemeny, Morgenstern and Thompson assume that 8i; 9m : bmi > 0, i.e. every commodity has a

process that produces it. I want to remove that restriction in the following way. Let there be a set

of commodities R � N : 8i 2 R;8m 2 M; bmi = 0 (called resources) which have a �nite reserve ri,

and a �nite renewal rate si. For example iron ore has e�ectively zero renewal rate, whereas rainwater

does not. Then clearly

ri(T ) = ri(0) +

Z T

0

si �
X
m

amizmdt (7)
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To include the e�ect of bounded resources, alter equation (6) to read

_pi = �i

�
demand

supply
� 1

�
pi = �i

 PM
m=1 amizm

ri
� 1

!
pi; 8i 2 R: (8)

When ri is large, the e�ective resource price drops to zero, as it does in current economies. Each

resource will need to be processed (eg iron ore needs to be extracted from the ground, and shipped to

the smelters), this then corresponds to a process zm that has ami > 0. As extraction of the resource

starts to exceed availability, the price rises dramatically and the only thing that will prevent the

escalation of prices to in�nity is that another resource (with a more expensive process | eg mining

asteroids in the case of iron ore, or towing icebergs from Antarctica in the case of freshwater) will

become economically viable, setting a new price \equilibrium".

3 The Balanced Growth Solution

Consider initially a fully connected economy. This means that ultimately, every commodity depends

on every resource i 2 R. To make this more precise, let A(S � N ) = fj : Pm amjbmi > 0;8i 2 Sg
be the set of inputs required to make a set S of commodities. Then a fully connected economy is one

where 9n 2 N : 8i; An(fig) = R. We can then replace this economy with its nth iterate, i.e. one

where each process m 2 M now has input coe�cients

a
(n)
mi =

X
m1;:::mn2M

ii;:::in2N

ami1bm1i1am1i2bm2i2 � � �amni:

Then 8i 2 NnR;8j 2 R;Pm2M bmia
(n)
mj > 0. Since (j 2 R) each have �nite production rates, so

does every commodity i, given by the minimum over
P

m bmia
(n)
mj _rj .

The only way to obtain a perpetual growth economy (with �xed numbers of commodities and

processes) is to assume �a la Kemeny, Morgenstern and Thompson that R = ;. Then there must be

generators of the economy, i.e. sets G � N so that 8i; j 2 G; 9n 2 N : i 2 An(fjg). In words, this is

saying that G is a completely self-su�cient subeconomy, it produces all its own inputs. The completely
connected case corresponds to asserting that there is a unique generator G.

For convenience, write equations (5) and (6) in the following form:

_zm = zm�m (9)

_pi = pi�i (10)

with

�m = �m

 PN
i=1 bmipiPN
i=1 amipi

� 1

!
(11)

�i = �i

 PM
m=1 amizmPM
m=1 bmizm

� 1

!
(12)

The long time behaviour of the system can be found by a time average

lim
T!1

ln zm(T )

T
= lim

T!1

1

T

Z T

0

_zm

zm
dt = lim

T!1

1

T

Z T

0

�mdt = �0m (13)

lim
T!1

ln pi(T )

T
= lim

T!1

1

T

Z T

0

_pi

pi
dt = lim

T!1

1

T

Z T

0

�idt = �0i (14)
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Let Z = fm : �0m � �0l 8l 2 Mg be the set of maximal growth rates, and P = fi : �0i � �0j 8j 2 Ng
be the maximal ination rate. Now if bli > 0 9l 2 Z , then

�0i = �i

�P
m2Z amiẑmP
m2Z bmiẑm

� 1

�
<1; (15)

where zm(t) �! ẑme
�0lt. However, should bmi = 0 8m 2 Z , and ali > 0 9l 2 Z , then

�i = �i

 PM
m=1 amizmPM
m=1 bmizm

� 1

!
�! �i

 
zl
P

m2Z amP
m62Z bmizm

� 1

!
�!1: (16)

So pi grows \superexponentially" in this case. Substituting this back into equation (11), we �nd

�0l = �l

�P
i2P blipiP
i2P alipi

� 1

�
= ��l; (17)

i.e. the economy collapses under the weight of hyperination of its inputs. This is an uninteresting

solution as this situation can only happen transitorily. The complement of the above cases is simply

that ami = bmi = 0 8m 2 Z . In this situation, the processes of greatest growth are entirely

disconnected from the commodities of interest in the economy, so one should start again usingMnZ
as the set of processes.

Exactly equivalent relations exist for �0i, i.e. if ami = 0 8i 2 P , and bmj > 0 9j 2 P , then
process m diverges superexponentially, causing a price crash for the whole economy. However, if

amj > 0 9j 2 P then

�0m = �m

�P
i2P bmiP
i2P ami

� 1

�
<1; (18)

This result, that the inputs for processes in the maximal growth set must be contained within

the outputs can be expressed as A(Zo) � Zo, where Zo = fi 2 N : bmi > 0; 9m 2 Zg. Now

8i 2 Zo, the sequence fig; A(fig); : : : ; An(fig) are all subsets of Zo, where n > N . However, 9ni; n2 :
An1(fig) \ An2(fig) 6= ; as there are only N elements to chose from, so Zo \ G 6= ;. Furthermore,

since 8i; j 2 G; 9n : i 2 An(fjg), then G � Zo, i.e. all goods in the economy generator are produced

from processes at the maximum growth rate. Since each commodity is connected to the generator,

the whole economy has a unique growth rate, i.e. the time average of equations (5) and (6) is the von

Neumann solution.

This result can be readily generalised to incompletely connected economies, by positing a number

of generators G1; : : :Gn, each with its own growth rate. Then each commodity grows with the rate

given by the minimum growth rate of all the generators it is connected to. This is the KMT solution.

Because of the averaging property (13), Jansen's condition for permanence[4] can be applied to

each generator Gi, with the centre of motion transformed away by zm = ~zme
�t and pi = ~pie

�t where

� and � are the unique growth rates for the generator. Permanence for the economy as a whole is

the logical and of permanence for each generator, and having a positive return for each process m

(�m > 0 8m).

4 Adding Evolution

Now that we have an economic dynamics established, we need to consider how to graft on an evolu-

tionary process. By direct analogy with Ecolab, it is clear that when a process exhausts its capital

(Km = 0), it forever remains that way, so this is equivalent to extinction in ecosystems. Adding new

processes and commodities is conceptually easy. Blatt p57{58[2]:

What about technological progress? This can be included by assuming that the list of

activitiesm = 1; 2; : : : ;M is not �nal, but new activities may be invented and hence become
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available for use, as time goes on. This makes the total number of processes a function

of time: M = M(t). There is no need to remove obsolete processes from this list, since

such processes may run at zero activity level. Although this way of handling technological

progress exists in principle, we are not aware of any actual theoretical work making use

of this idea. Von Neumann himself developed his theory on the basis of an unchanged

technology (all input coe�cients, output coe�cients and the number of processes M are

constant in time), and his successors have done the same. The inclusion of technological

progress appears to us to be a highly interesting avenue for further exploration.

The di�culty is deciding how to choose new coe�cients ami; bmi; �i and �i when a new process

is added. There is no genotype of a process | the closest thing to it is Dawkins's meme, and there

is no genetic algorithm theory of the meme. Clearly new processes arise evolutionarily, with the new

processes modeled on the old. The new coe�cients will be varied randomly about the old values

according to some kind of central distribution.

Recent results from Ecolab indicate that the emergent dynamics of the system is rather insensitive

to the speci�c type of mutation algorithm chosen. Work is currently under way to classify exactly

what e�ects di�erent assumptions make.

In 1962, Arrow[1] pointed out that the cost per unit for production of an artifact falls as an inverse

power of the number of units produced:

cost=unit / N�a

This power law is most likely a consequence of the statistical properties of the underlying \�tness"

landscape, as it can be seen in Kau�man NK model[5]. Presumably an evolutionary algorithm that

searches process (and commodity) space according to the same power law would be optimally matched

to generating change. However, it can also be pointed out that large changes of process are likely to

cost proportionally more than smaller changes. As any research budget is �nite, the distribution of

process improvements must be �nitely integrable (have a �nite area underneath the curve), which the

power law distribution is not, but the normal (Gaussian) distribution is.

5 Implementation in Ecolab

The dynamical equations are relative easy to implement. There are now two sparse matrices a and

b, that are no longer square, but their product a*b is square. Introducing a transpose operator tr

(which trivially swaps row and col, the dynamical equations can be implemented in the following

lines of code:

dz = kappa * ( (a*p)/(tr(b)*p) -1 ) * z;

dp = pi * ( (b*z)/(tr(a)*z) -1 ) * p;

z += dz; p += dp;

For the mutation operator, and initial proposal is for processes to spawn o� new processes (this

could be imagined to be companies spawning new companies, or companies developing new product

lines), proportional to their activity (which happens to be proportional to their capitalisation). The

new values of � and � will be generated by taking a value r from some positive distribution, such as

an exponential, then evolving the parameters according to

�0 = exp(log(�) + r) (19)

Most of the other tools in Ecolab will port easily | the connect plot widget will display the

products a*b and tr(b)*tr(a).
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6 Conclusion

Econolab is a well de�ned economics model that will provide a �rst step toward understanding how

economies evolve. Watch this space!
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Abstract

The cellular automata (CAs) which asymptotically lead to uniform regular patterns, namely

crystalline CAs are discussed. The two-dimensional and two-states-per-cell CAs with �ve neigh-
bour structure are particularly focused. First, various CA evolution patterns are analysed by
the entropy function, and it is suggested that there are two types of CAs with static or chaotic

evolution. Analyses using a newly-introduced rule parameter, called � parameter, ensure that the
crystalline CAs appear at the phase transition point between static and chaotic CAs. The observed
phenomena are probably considered as a generalised model of liquid/solid phase transition.

1 Introduction

Many systems composed of countless elements in nature have their own temporal and/or spatial

patterns, e.g. galaxies, the weather, biological and ecological systems and societies. These patterns

appear without explicit pressure or constraint from outside the systems, and such phenomena are

called self-organisation. The objective of studies of self-organisation is to understand the underlying

properties of such phenomena in general, and has been explored by many scientists, e.g. [1, 2, 3, 4].

Crystallisation from a liquid state, which is a common example of self-organisation, governs phys-

ical characteristics of solid-state materials and is of great importance in science and engineering. The

traditional explanation of this phenomenon starts from the microscopic laws applicable to their com-

ponents, the quantum mechanics in this case. However, as seen in Figure 1, it is possible to embody

similar dynamics by exploiting dynamical systems arti�cially de�ned in the discrete space with a sim-

ple rule of evolution. This fact indicates that the essence of crystallisation in general is not quantum

force but something else: This paper attempts to describe what this is.

Cellular Automaton (CA) is a common tool for studying such self-organising phenomena, e.g.

[5, 6, 7, 8, 9], and was adopted also in this paper. Due to the simplicity of method, CA is expected to

yield the results which could be applicable to crystallisation in general. Another advantage of using

CAs is easy implementation of the computer algorithm.

This paper discusses two-dimensional CAs causing crystalline patterns from theoretical and em-

pirical perspectives, and focuses on their statistical features to extract some general properties of such

phenomena.

2 Notation and the scope of analysis

Consider an integer value ai;j(t) 2 f0; 1g assigned at a two-dimensional discrete site (i; j), i 2
f0; 1; :::; Ng and j 2 f0; 1; :::; Ng, where t 2 f0; 1; 2; :::g is a time step. The site value ai;j at the

next time step is deterministically given by the mapping

ai;j(t) = f [ai�1;j(t� 1); ai+1;j(t� 1); ai;j�1(t� 1); ai;j+1(t� 1); ai;j(t� 1)]; (1)

where f is an arbitrary function which speci�es the CA rule, hence the value of a given site depends on

the last values of �ve \neighbour" sites. This neighbourhood pattern is called �ve neighbour structure,

and is sometimes referred to as the von Neumann neighbourhood. The total number of neighbour
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t=500

t=50t=0

t=150

Figure 1: Crystalline structure created from a random con�guration by a particular CA rule.

state patterns is 25 = 32, therefore a CA rule is composed of 32 mapping functions. In other words,

there are 32 rule \entries" per rule. In this paper the value-0 state (or the \empty" state) is considered

as a quiescent state, which means

f(0; 0; 0; 0; 0) = 0; (2)

is satis�ed, i.e. the value-1 state (or \occupied" state) is never generated only by \empty" neighbours.

This requirement is useful when the CA is used to model interacting particle systems. In addition, the

CA space is assumed to be isotropic, i.e. the rule is always rotationally and reectionally symmetric.

If a CA rule is de�ned such that each site value at the next time step is calculated by the \home" site

value and the sum of the last value of the other neighbour sites such as

ai;j = g[ai;j(t� 1); ai�1;j(t� 1) + ai+1;j(t� 1) + ai;j�1(t� 1) + ai;j+1(t� 1)]; (3)

the rule is called an outer-totalistic rule, and provides a subset of symmetric CA rules. The Game of

Life [10, 11] is an example of the outer-totalistic rule with the nine neighbour structure.
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t=100t=30

t=0 t=10

Figure 2: An example of expanding CAs given by the rule outputting 0 except for g(0; 1) = 1.

It is surmised that the occupied cells in the background of empty cells always multiply toward the

four directions when

g(0; 1) = 1 (4)

is satis�ed, as in Fig. 2 for example (see Appendix A for the reason). The analyses in this paper

focus on CAs satisfying eq. (4), otherwise the occupied cells may disappear, or may become localised,

as in Fig. 3. Such CAs must be eliminated from our scope in advance.

Let us tentatively swap the empty and occupied states in Fig. 2, and consider empty cells expanding

into an occupied-state background. The expandable condition for an empty state can be derived by

reversing all the input and the output states of eq. (4) such as

g(1; 3) = 0: (5)

By taking account of this condition it is possible to remove the CAs whose evolution leads to localized

empty cells such as in Fig. 4. Together with eq. (4), the condition of eq. (5) ensures that both

occupied and empty cells do not become localised. In this way, the two types of cells are mixed with

each other so that the CA pattern may become crystal-like, as in Fig. 1.

If eq. (2) is not satis�ed, i.e. if

g(0; 0) = 1 (6)
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is satis�ed, then the \empty" background as seen in Fig. 2 will change to an occupied-state background

one time-step later. As mentioned above, rules that include such a mapping are not considered in this

paper, but the reverse of eq. (6)

g(1; 4) = 1 (7)

does not violate the quiescent condition, and prohibits a large space �lled with occupied sites such

as in Fig. 4. Therefore, as with eq. (5), eq. (7) can also avoid the localisation of empty cells in the

background of occupied cells.

From the discussion above, CA rules satisfying

g(0; 1) = 1 and fg(1; 3) = 0 or g(1; 4) = 0g (8)

are expected to lead random con�gurations to become neither homogeneous nor localised patterns of

both empty and occupied cells, which was con�rmed by empirical studies. Consequently the CAs in

this condition are those which can potentially cause a crystalline structure, and are examined in the

next section.

3 Analyses

3.1 Statistical measures of the CA

To understand the crystalline structure of CAs, it is useful to look at the entropy associated with

their spatial pattern. The information entropy H is de�ned as

H � �
X
k

P k log(P k); (9)

where P k is a probability of the event k [12], and this can be used to evaluate the randomness (or

regularity) of statistical variables. Consider four adjacent sites such as (i; j), (i+ 1; j), (i; j + 1) and

(i + 1; j + 1); there are 24 = 16 possible patterns for this local patch. The entropy of the spatial

pattern of CA con�guration Hs at an arbitrary time step � can be de�ned by

Hs(�) � �
X
k

P k
s (�) log16(P

k
s (�)); (10)

where P k
s (�) is the probability for a particular pattern of the local patch at the time step � . Note

that a base of 16 is used for the logarithmic function as the entropy assumes a position between nil

and unity. Typical CA con�gurations varying with Hs are shown in Fig. 5. CAs with high Hs have

random spatial patterns, whereas those with low Hs have regular patterns, i.e. crystalline structure.

Figure 6 shows the distribution Hs for all 768 cases satisfying eq. (8). The �gure indicates that

low-Hs (i.e. crystalline) CAs are in the minority and most CAs have random spatial patterns.

Similarly to Hs, it is possible to de�ne the entropy associated with the temporal pattern. Consider

an arbitrary site (i; j). There are four mapping patterns to the next time step per site, i.e. 0 ! 0,

0 ! 1, 1 ! 0 and 1 ! 1, and assume we sample the mapping pattern of the site during a certain

period. From the probability of each mapping pattern, the entropy of the temporal CA development

at the site can be de�ned by

H
(i;j)
t � �

X
k

P
k;(i;j)
t (�0; �1) log4(P

k;(i;j)
t (�0; �1)); (11)

where �0 and �1 are the respective initial and �nal time steps of the data collection. The base of

4 is used for the logarithmic function as the entropy assumes a position between nil and unity. By

collecting the entropy of all sites the average entropy of the temporal CA development (Ht(�0; �1))

can be given. Figure 7 shows the distribution of the CAs on the Hs�Ht space, where the data Hs are
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collected at the time step 2000 and those for Ht are collected during 1900� 2000 time steps. The Ht

clearly classi�es the CAs into two groups, random and regular time-developing groups. Some points

with moderate Ht correspond to CAs which are still transient even after 2000 time steps, and are

expected to drop to the low-Ht region soon or later according to their past tracks. The high-Ht CAs

always have a high-Hs value, and these are generally recognized as chaotic. The Hs of static (low-Ht)

CAs, on the other hand, have various values and it is di�cult to clearly separate crystalline CAs from

non-crystalline ones. The graph also indicates that the crystalline structures are stable once they are

produced, because all the crystalline (low-Hs) CAs have regular time-development (low-Ht) after the

transient period.

3.2 The � parameter

If a rule is con�gured such that all cell states never change whatever state the neighbour sites have,

that is,

g(0; i) = 0 and g(1; i) = 1(i = 0; :::; 4); (12)

then it is expected that the evolution leads to a constant development. On the other hand, if a rule is

con�gured such that all cell states perpetually change whatever state the neighbour sites have, that

is,

g(0; i) = 1 and g(1; i) = 0(i = 0; :::; 4); (13)

then the CA evolution becomes periodic with the period two. These are the two extreme cases, and in

the case of general rules, the mapping may or may not change cell states depending on the neighbour

state. As a descriptor of how the cell state is changeable, we consider a parameter uniquely determined

for each rule

� =
25 �m
25

; (14)

where m is a total number of the rule entries which update the cell state unchanged. The value of eq.

(14) is hereafter called the � parameter. For instance, the � parameters for the rules of eqs. (12) and

(13) are nil and unity respectively. Note that the � parameters is di�erent from the � parameter [13].

Figure 8 shows the frequency distribution of the � parameter for static and chaotic CAs. CAs in

the static group have a �-value near the extrema, and the value for those in the chaotic group is in

the central range of �. Thus the graphs imply that the transition from static to chaotic takes place

as the � parameter changes from �0 (or �1) to the moderate value, where �0 and �1 are the smallest

and largest values of � parameter satisfying eq. (8) (�0 � 0:156, �1 � 0:968).

Consider CAs with �0 � � � 0:5. If a rule has � close to �0, we can presume that from the

de�nition of � that there are many kinds of local patterns which remain unchanged through the

updating by the rule. Therefore, CA evolutions starting from a random con�guration remain random,

although these time-developments are regular; these CAs are thought to be located at the high-Hs

and low-Ht range in Fig. 7. As the � parameter increases the number of such constant local patterns

decreases, and accordingly the CA's spatial pattern after the transient period becomes less random.

At the same time, the position of the CA on the Hs � Ht space (Fig. 7) shifts gradually to the

low-Hs and low-Ht range. If � becomes so large that only a few kinds of local patterns can remain

unchanged, these particular patterns must be spread all over the CA space through the continuation

of this process, because each local pattern keeps changing unless it �ts one of the particular patterns:

This is considered to be the mechanism of crystallisation. For this reason, relatively longer transient

times can be observed for the crystalline CAs compared to the others. There is a certain point in the

� parameter, say �c, at which all constant local patterns disappear. The rules with � � �c therefore
lead to random time development and random spatial con�guration, and correspond to the high-Hs

and high-Ht group (namely the chaotic group) in Fig. 7. The value of �c is, however, not uniquely

determined, because the largest � which leads to the crystalline structure is dependent on the type of

patterns.
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A similar discussion is possible for the CA rules with 0:5 � � � �1. The crystalline structure in

this case is determined not by the constant local pattern but by the period-2 local pattern.

Figure 9 shows the ��Hs distribution of CAs with Ht < 0:1, namely static CAs. Crystalline CAs

have moderate values of �, while the non-crystalline ones have values near the extrema. These results

also support the above scenario.

To sum up, the � parameter statistically parameterises the CA rules, and is a key value of the

crystallisation and the phase transition between static and chaotic performances. As mentioned in

[13], the � parameter is related to the four Wolfram Classes [6]:

1. Evolution leads to a homogeneous con�guration.

2. Evolution leads to a set of separated simple stable or periodic structures.

3. Evolution leads to a chaotic or aperiodic pattern.

4. Evolution leads to a complex localized structure, sometimes long-lived.

Because the two parameters are independent, these combinations can give more detailed classi�cations.

As already mentioned in section 2, the classes 1,2 and 4 are eliminated from the scope of this study,

and the above analysis suggests that the remaining CAs are classi�ed into three groups: Two more

classes (crystalline and noncrystalline-and-static classes) can be added. These six classes are roughly

located in the landscape of the rule space drawn on the �� � plane as seen in Fig. 10.

It is worthwhile to compare such CA dynamics to crystallisation in nature. The static and chaotic

classes correspond to solid and liquid phases, respectively; the � parameter corresponds to temper-

ature. The initial condition is \liquid" as shown in Fig. 1. The \liquid" is cooled rapidly when �

is low, and a non-crystalline structure (or amorphas) is produced. If the \liquid" is slowly cooled

at around melting point, i.e. at �c, crystal is produced. The initial \liquid" continues to be liquid

if � is high. The major di�erence is only that the �c is not uniquely determined like the melting

point. Consequently, the macroscopic properties of the crystallisation in CAs is fairly similar to those

in nature. The microscopic mechanism of crystallisation is commonly understood to be that existing

crystalline structures allow a local pattern (a molecular) join if it is matching in structure, whereas

those unsuitable (impurities) are likely to remain in solution. This is clearly similar to the mechanism

of CA crystallisation as explained above.

4 Concluding remarks

Two-dimensional CAs causing the crystalline structure were studied. The spatial and temporal pat-

tern entropy functions successfully characterise them, and classi�ed them into two groups, static and

chaotic. The background for this classi�cation was investigated using the � parameter, the probability

for a cell-state to remain unchanged at the next time step; the � parameter is uniquely determined

by the rule de�nition. Theoretical and experimental studies con�rmed that the � parameter statis-

tically parameterises the CA rules, and that it is a key value to the phase transition between static

and chaotic performances. In addition, it was surmised that crystallisation appears when the rule

has a � parameter near the critical point between static and chaotic CA evolutions. The observed

phenomena are probably considered as a generalised form of crystallisation, including ones in nature

and computers.

A The expandability of CAs

One-dimensional CAs with 3-neighbour structure are de�ned by

ai(t) = f1[(ai�1(t� 1); ai(t� 1); ai+1(t� 1)]; (ai 2 f0; 1g; i 2 Z) (15)
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and rules satisfying the quiescent condition considered as

f1(0; 0; 0) = 0; (16)

and

f1(1; 0; 0) = f1(0; 0; 1) = 1: (17)

Let us assume an initial condition of a single occupied site at the position of i = 0 with the background

of empty sites. When t = 1, two cells at the position of i = 1 and �1 are occupied. Similarly, two

cells at i = 2 and �2 become occupied when t = 2. Generally, when t = � , the sites at i = � and ��
have an occupied state, and a \triangle" is formed in the spatio-tempo CA space, as seen in Fig. 11.

The sites inside the triangle have either an occupied or an empty state, but it is never totally empty

because an isolated occupied cell at i = � again becomes another \seed" of the triangle. In this way,

occupied cells spread all over the CA space, and this property is not inuenced by the other entries

such as f1(1; 1; 0). The evolution from the random con�guration also leads to expansive dynamics as

seen in Fig. 11a. Therefore the condition of eq. (17) ensures the expandability of the 1-dimensional

CA. Equation (4) is the extension of this condition to two dimensions and ensures the expanding

dynamics of 2-dimensional CAs.
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Figure 3: The evolution leads to localized occupied cells: The rule outputs 0 except for g(0; 3) =

g(1; 1) = g(1; 2) = 1.
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Abstract

In this paper, we extend the environment management game, \The Lake", to the agent based
iterated game. In the original game, the factories as players can make coalitions to save the cost for
water puri�cation. Although the whole coalition formation is a desirable solution in the original

game, the rational factories fail to make whole coalitions and some of them become free loaders.
To discuss more realistic situations and dynamic coalition formative processes, we introduce a new
game model based on multiple lakes with local governments as new players. The local governments

will a�ect the factories by levying taxes and imposing penalties. Although the objective of the local
governments to maximize revenues, the competition between local governments cause dilemmas
to restrain their sel�sh behaviors. Therefore, the governments have to adjust the tax and penalty

adaptively according to the number of factories at their lakes. Under the adjustments of tax
and penalties, the factories will be expected to make coalitions. In the experimental results,
the evolutionary acquired strategies of these players are shown to produce the complex coalition

formation processes in iterated games. Especially, we compared the single lake model and the
multiple lake model to discuss the e�ects of the government dilemmas.

1 Introduction

In this paper, we propose the agent based iterated game of coalition formation for discussing what kinds

of local interactions of agents produce complex formation processes according to their situations. In

game theory, a coalition is a subset of players that has a binding agreement concerning their strategies.

While in agent based game simulations, cooperative or competitive relations between agents develop,

as in the prisoners' dilemma[1] or the market game [4], coalition based game simulations have not

received attention until now. The relationship of coalition between agents will be expected to be a

more complex phenomenon and require more complex decision processing in the agents.

However, the concept of coalition in game theory is mainly focused with its structure and the

sharing of payo� according to rational decisions in static environments. Thus, there is no game theory

model based on interaction of agents forming coalitions.

To develop the coalition formative game based on agents, we extend \The Lake" into an iterated

multiple lake game with local governments. \The Lake"[5] is known as one of the environment man-

agement games. In the original game, the factories as players wish to make coalitions to decrease the

cost of water puri�cation. This cost will change according to the number of factories who treat the

used water before discharging them into the lake. However, if some factories make the coalition to

treat the used water, other factories can decrease the cost without treating the water. Therefore, it is

hard to make the whole coalition without preventing some factories becoming free-loaders.

Our interest is in what kind of interactions will prevent factories becoming free-loaders and how

to adjust such interactions autonomously. Therefore, we introduce local governments as new players

and multiple lakes for factories to select for their operations. The local government in each lake levies

a tax on all factories around the lake and imposes a penalty on those in the anti-treating coalition.

Although the objective of local governments is to increase total revenue, the factories also can select

the lake to decrease the total cost including the tax and penalty. Therefore, the local governments



Tomohisa Yamashita, Keiji Suzuki and Azuma Ohuchi 377

can't raise the tax and penalty inde�nitely, because they obtain no revenue if there is no factory siting

at their lake. As a result, the local governments are in a dilemma about whether to raise or reduce

taxes and penalties, while factories will participate in the coalition that gives them the best payo� in

the lake with the lowest pollution rate. Therefore, the interactions among the local governments and

factories will be expected to show complex formative processes.

Throughout this proposed game model, the formative process is simulated with the agents as the

factories and local governments. To �nd adaptive strategies based on expected payo�, evolutionary

operations are applied to the strategies during each iteration of this game.

In the next section, the original game model, i.e., \The Lake", is introduced. An outline of the

extended game model is proposed in section 3. The implementation as an evolutionary iterated game

model is described in section 4. Finally, the simulation results are shown in section 5. Section 6

concludes this study.

2 Background

The Lake[5] is one of the environment managing games[3, 6]. In this game, there are m factories

around a lake. In order to use the water for their work, they have to purify the water before they

use it. The problem for the factories is that they should treat used water before discharging it back

into the lake or not, according to the total cost for the puri�cation. Here, it costs an amount B for

a factory to treat its wastes before discharging it into the lake. It costs an amount (m � s)D for a

factory to purify its own water supply, if (m � s) is the number of factories that do not treat their

waste. If we assume that D < B < mD, some factories will wish to make a coalition because they

can have a chance to decrease their costs by treating the waste water before discharge. Namely, the

payo� (cost) for each player is altered by the number of the treating coalition, s, as follows;

v(S) =

� �smD if s < B=D

�sB � s(m� s)D if s � B=D (1)

According to this function, the strategy of the anti-treating coalition of m � s factories, named

anti-tc, is not to treat the waste. While, the treating coalition of s factories, named tc, treats its wastes

only in the case that they can reduce the cost of purifying their own water supply. The condition

whether the treating coalition treats its wastes or not is de�ned as follows;�
treating if s < B=D

not treating if s � B=D (2)

We assume that the players of this game play for purpose of maximizing their own payo� according

to their individual rationality. In this case, we can easily imagine that the desired result is for all

of the factories to participate in tc. However, such desirable result will not appear if a subset of the

factories has made tc. Namely, if other players are participating in tc, a player should participate in

anti-tc because it will reduce the cost of purifying its own water supply by not treating its waste. So

the optimal strategy is to participate in anti-tc, in other words free-load the treating coalition. In

another case, if all the other players participate in anti-tc, a player should also participate in anti-tc

because it is useless for it to spend for the others. So the optimal strategy is also to participate in

anti-tc. Therefore the optimal strategy on this assumption is to participate in anti-tc. There is no

player who participates in tc when all players act on the optimal reaction principle. Thus, we can't

stop the players becoming the free-loaders and �nally all players abandon to treating their waste under

this game de�nition. In order to avoid this undesirable situation, what kind of interactions should be

added in this game? Furthermore, our interest is that the adaptive agents as the players can be aware

of the strategies for achieving the desirable situation or not, based on their local interactions.

In next section, we propose the extended game for evaluating the coalition formation process based

on the agents.
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Figure 1: Multiple lake with local governments

3 Multiple Lake Game with Local Governments

In the original game model, it is hard to make the whole coalition and prevent factories from becoming

free-loaders. Now, our interest is what kind of interactions will prevent the factories becoming the free-

loaders and how to adjust such interactions autonomously to make the whole coalition. Therefore, we

introduce local governments as new players and multiple lakes for the factories to site their operations.

3.1 Introduction of local government

In order to prevent factories from becoming free-loaders, \local governments" as new players are

introduced into the game. The local government wishes to levy a tax on all factories around the lake

and imposes a penalty on the anti-treating coalition.

As a result, the characteristic function of factories is determined by the tax, the penalty and the

size of coalition. The balance of these factors will change the decision making of the factories even if

they obey individual rationality. The revenue of the local government is the sum of the tax and the

penalty levied on the factories. That is, the purpose of the local government is to maximize its own

revenue by adjusting the rates of the tax and the penalty.

3.2 Multiple Lakes

If only one local government exists the game, the government will raises the tax and the penalty

inde�nitely. To avoid this monopoly situation, some kinds of relation is required to restrain the sel�sh

activity of the local government. Thus, we introduce multiple lakes in order to introduce competition

between the local governments assigned to the lakes. Now, the strategy of the factories is also extended.

They can select not only the one of two coalitions, but also the lake to site their operations.

Why does the existence of some local governments cause a competitive situation? If some local

governments levy high tax and impose high penalty to obtain high revenue, the factories under those

governments will move to other lakes. The local governments hence can't raise the tax and the penalty

inde�nitely, because they will obtain no revenue if there are no factories selecting their lake. As a

result, the local governments are in the dilemma of whether to raise or reduce the tax and the penalty.

To describe the strategy of the factories, we de�ne the whole coalition set as

ftc1; anti-tc1; :::; tcn; anti-tcng.

3.3 Introduction of the pollution rate and the cost of movement

Agent societies have been used as the basis for studies of social and economic behavior. Therefore, it

seems unrealistic that the agent society does not include a limit to the natural resources and restraints

of behavior by cost.
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We assume that the natural resources of the lakes are limited to form a more realistic game model.

There are two cases in which the pollution rate of one lake goes up. One case is that the size of anti-tc

is over one constant number. The other case is that the sum of the size of tc and that of anti-tc is

over another constant number. Above mentioned D as the cost of treating its own water in the lake

raises according to the pollution rate going up. The pollution rate will fall down according to the size

of tc and that of anti-tc going down.

To reect reality in this game model, we assume that if factories move to other lake, there will

be a constant cost associated with the movements. With this restriction, we expect the inhibition of

frequent movements of the factories without the adaptive coalition formative process.

3.4 Introduction of the strategy to opt-out

By introducing multiple lakes, local governments are put in a dilemma. Although, if all local govern-

ments raise both their taxes and penalties at the same time, the factories can't evade through their

selection of the operating place. To protect the factories from such situation, \opt-out" as additional

strategy for the factories is introduced. Choosing this strategy means not operating on any lake.

Namely, the factories in the opt-out have to refuse to interact with others, having neither the bene�ts

nor the risks. If a factory chooses this strategy, the player has to pay a constant cost no matter how

other players behave.

4 Agent based Implementation

4.1 Outline of agent based Iterated Game

Figure 2 shows the iterating process of the proposed game. Figure 3 shows the outline of agent based

multiple lake game.

Two kinds of agents as players exist in this game. One has the role of the factories. A factory

agent selects a lake as a site of operations initially. Then, it has to decide which coalition it should

participate in. The role of the local government agent is to decide how much tax to levy and impose

a penalty against the coalitions on its lake. According to their decisions, each of the agents receives

a payo�. This decision making process is iterate until time T . After this process, the evolving phase

is applied to �nd adaptive strategies for each agents. That is, the strategy of each player will be

modi�ed by evolutionary operators based on the received payo�. Here, one generation in this game

is de�ned as the series of the decision making processes and the following evolving phase. In each

generation, K, we will expect the agents to produce adaptive coalition formations based on their local

interactions.
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In this game model, the number of the lakes is set to n. In describing the following strategies of

the factories, we de�ne the coalition set as follows.

ffSi; Sig; opt-outg i = 1; :::; n (3)

Si denotes the treating coalition of lake i. Similarly, Si express the anti-treating coalition of lake

i. We de�ne the size of treating coalition as jSij, the size of anti-treating coalition as jSij.

Pollution rate of lake

To represent the limitation of resources, we introduce the pollution rate of a lake. The concept of the

rate may reect the natural purifying ability of a lake.

In this model, we formulate the pollution rate with the following four elements. One is the average

size of a treating coalition in the kth generation, jSi(k)j. Another is the average size of an anti-treating
coalition in the kth generation which is represented by jSi(k)j.

The others are the thresholds concerning a limited size of an anti-treating coalition, L1, and the

threshold concerning a limited sum of factories, L2.

The pollution rate is �xed during each generation. Then, the rate is renewed based on these

parameters before starting the next generation.

That is, the pollution rate in the kth generation is de�ned as follows;

Poi(k) =

8>>><
>>>:

(100� Poi(k) + 3)=100 if jSi(k)j+ jSi(k)j � L1 and jSi(k)j � L2

(100� Poi(k) + 1)=100 if jSi(k)j+ jSi(k)j � L1 or jSi(k)j � L2

(100� Poi(k)� 1)=100 if jSi(k)j+ jSi(k)j < L1 and jSi(k)j < L2 and Poi(k) > 1

1 if jSi(k)j+ jSi(k)j < L1 and jSi(k)j < L2 and Poi(k) � 1

(4)

Not only the factories but also the local governments have to adapt to this natural change in

the environment, because the pollution rate will a�ect the cost of purifying the water in the iterated

process.

4.2 The strategy and the characteristic function

The strategy and the payo� function of local government

The purposes of the local governments are to maximize their revenues. They have to adjust the tax

and the penalty rates because they are caught in a dilemma. To adjust the taxes and the penalties,

they raise or reduce from current values. Here Ti(k; t) is the tax value and Peni(k; t) is the penalty

value levied by the government of the lake i. Namely, the strategies of the local governments change

the values with -1 (decreasing), �0 and +1 (increasing) from the current values. At the tth game in the

kth generation, the current tax 
Ti(k; t) is set as 
Ti(k; t)=fTi(k; t�1)�1; Ti(k; t�1); Ti(k; t�1)+1g.
The current penalty 
Peni is 
Peni(k; t)=fPeni(k; t� 1)� 1;Peni(k; t� 1);Peni(k; t� 1) + 1g.

The payo� for the local government assigned the lake i depends on the size of the coalitions in

the lake. Here, the size of treating coalition of lake i is represented as jSij. Similarly, the size of

anti-treating coalition is denoted by jSij. The payo� function for the local government is de�ned as

follows;

g(Ti(k; t);Peni(k; t)) = (jSij+ jSij)Ti(k; t) + jSijPeni(k; t) (5)
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The strategy and a characteristic function of factory

To operate the factories, the factories have to pay the cost for treating and purifying water. The

factories can select which lake to operate from, and which coalition to participate in. The strategy

set of factory j is represented as

�j = ffSi; Sig; opt-outg i = 1; : : : ; n (6)

Therefore, at the tth game in the kth generation, denote the strategy of the factories j as �j(k; t).

Here, we abbreviate �j(k; t) to �j and describe the complementary vector of strategies:

(�1; : : : ; �j�1; �j+1; : : : ; �m);

as ��j .

According to the participating coalition, the costs of the coalitions are varied. That is, the coalition

value depends on not only the size of the coalitions but also the strategies of the local governments.

Furthermore, the pollution rate is a�ected to the value. Therefore, the characteristic function of Si
can be constructed as follows;

v(Si) =

�
�� jSij(jSij+ �)Poi(k)D � Ti(k; t)� Peni(k; t) if jSij=jSij < B=D

�� jSij(B � jSijD)Poi(k)� Ti(k; t) otherwise
(7)

Similarly, the characteristic function of Si can be de�ned as follows;

v(Si) =

�
�� jSijPoi(k)D � Ti(k; t)� Peni(k; t) if jSij=jSij < B=D

�� (jS2ij)2Poi(k)D � Ti(k; t)� Peni(k; t) otherwise
(8)

As sharing method of the coalition value to the members, the payo� of the factories is de�ned

by the coalition value divided with the number of the members. The reason is that all factories are

equal partners in the coalitions. Here, an element of a coalition in the set of � is represented as S.

Therefore, the payo� function of the factory participating in S is de�ned as follows;

fj(�j ; ��j) =

�
v(S)=jSj if coalition selected

const. if the opt-out strategy is selected
(9)

4.3 Evaluation of strategy

In this game, the players make decisions on the basis of the continuously updated values, \expected

payo�s", that relate to the reactive decisions in the iterated game and the evolution of the strategies.

The expected payo� is updated as follows; A player has received a payo� from the coalition of

which it participates in or levies a tax and imposes a penalty. It has recorded this payo�, and it has

updated its payo� count to reect the receipt of the new payo�.

Suppose, for example, that a player v receives a payo� P . Player v immediately updates its current

payo� count Nv, via the assignment statement,

Nv  � Nv + 1 (10)

According to the updating of the payo� count, the weight value, wv , is updated via the assignment

statement,

wv  � Nv

Nv + 1
(11)

Finally, the expected payo� Uv is updated via the assignment statement,

Uv  � wvUv + (1� wv)P (12)

The expected payo� is used for determining the reactive strategy in the agent. The detail of the

determination of the reactive strategy is describe in the following.
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4.4 Reactive Strategy with FSM

In this game, all of the players wish to maximize their sum of payo� in the repeated situations.

Therefore, the agents have to make the next decision based on the previous results. The previous

results are stored as the expected payo� in each agent. In order to determine the next decision based

on the expected payo�, we investigate the �nite state machines (FSMs) like as the iterated prisoner's

dilemma [2, 4]. Namely, the structure of each FSM represents the strategy of each agent.

The FSMs of player v is represented as Mv = (Iv ; Ov ; Qv; �v; �v).

The input value, Iv , is assigned by current expected payo�, like as Figure 4.

1 2 3

p a y o f f  P

eva lua tio n 
va lue 

U vd d

eva lua tio n va lue o f  s tr a tegy  /  nex t s tr a tegy
             ( inp ut)                            ( o utp ut)

1

2  /  2

1  /  3

3  /  1  

2  /  1 1  /  1

3  /  2

1
2 3

Figure 4: Structure FSM for reactive strategy.

The output value, Ov , is determined by the transition label that consist of a pair as Iv and Ov.

The output value denotes the next decision.

The number of states, Qi, is a constant. The transition function, �v, determines the next state

from the input value and the current state. The output function, �v , determines the output value

from the input value and the current state. These two functions are characterized in each player

throughout the evolutionary operations based on the expected payo�.

Each factory has two FSMs. One FSM determines a lake that it participates in (or opt-out).

Another FSM determines which coalition the factory should participate in. Each local government

also has two FSMs. One FSM determines whether to raise, remain or reduce current tax. Similarly,

the other determines the current penalty.

4.5 Evolution of Strategy with GA

In this paper, the agents try to acquire an adaptive strategy throughout the local interactions. In

order to acquire an adaptive strategy, a genetic algorithm (GA) is applied to the FSMs in each agent.

The chromosomes in the GA encode the transition function �v and the output function �v of the FSMs

in agents with bit strings. In applied GA, the chromosomes are arranged in torus plane. Namely, an

ecological type of GA is used for evolving the strategies. The �tness of the chromosome is just the

sum of the agent's payo�s. As evolutionary operators, we utilize the conventional two-point crossover

and the mutation with a certain probability.

5 Simulation

In this paper, we extend the original single lake game to the multiple lake game with the local

governments. Namely, we expect that the competition between the governments assigned to the

multiple lakes produce a dilemma and prevent unlimited raising of taxes even if the objective of the

governments is to maximize their revenues. To con�rm this expectation, we observe the transitions of

coalition formations, taxes and penalties in the case of one lake and three lakes.

5.1 The case of one lake

The parameters for this simulation are set as follows;
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Figure 5: The size of tc, anti-tc and opt-out
Figure 6: The average payo� of all facto-

ries

Figure 7: The penalty levied by local govern-

ment

Figure 8: The size of tc and anti-tc in lake 1

number of factories F = 100

number of lakes L = 1

number of local governments G = 1

number of generations Gen= 8000

number of iterations per generation I = 15

cost for treating its wastes B = 10

cost for purifying its own water supply D = 2

coe�cient of characteristic function � = 600

coe�cient of characteristic function � = 5:0

initial penalty Pen = 0

initial tax T = 0

initial expected payo� Uv = 0

memory weight w = 0:7

initial pollution rate Po(1) = 1:0

limit of the size of anti-treating coalition L1 = 5

limit of the sum of factory L2 = 45

cost of moving Cmove = 20

payo� of choosing to opt-out Payo�opt = 40

crossover rate Rcrossover = 0:5

selection rate Rselection = 0:5

mutation rate Rmutation = 0:05

The game was simulated with this set of parameter values. The coalition formative processes are

shown in Figure 5 to Figure 7. Figure 5 shows the number of tc and anti-tc and the number of the

factories to opt-out. Figure 6 shows the average payo� of all factories. Figure 7 shows the penalty

levied by government.

The detailed story in this simulation is described as follows;

0 | 100 generations

In the initial phase of the game, the size of anti-tc increased because the payo� of anti-tc is more than

that of tc. This situation caused the increase of the pollution rate immediately. In addition, the local

government changed the strategy to raise the penalty (Fig.7). Thus, the payo� to the participant in

anti-tc rapidly decreases in the initial generations (Fig.6).
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Figure 9: The size of tc and anti-tc in lake 2
Figure 10: The size of tc and anti-tc in lake 3 and

the number of opt-out

Figure 11: The average payo� of all facto-

ries

Figure 12: The penalty by levied by local gov-

ernments

100 | 7000 generations

The remarkable changes from the situation in the initial generations rarely occurred. The exception

was only that the local government discharged the high penalty at some times. In this situation, the

payo� of anti-tc was close to the payo� of opt-out. Therefore, almost all the factories selected opt-out

and the size of anti-tc was less than twenty.

5.2 The case of three lakes

The parameters for this simulation are the same as the parameters of one lake model, except for the

number of lakes and local governments. These two parameters for this simulation are set as follows;

number of lakes L = 3

number of local governments G = 3

The coalition formation processes in case of three lakes are shown in Figure 8 to Figure 12. Figure

8 to Figure 10 show the progress of the size of tc and anti-tc and the number of opt-out. Figure

11 shows the average payo� of all factories. The penalties levied by local governments are shown in

Figure 12.

The detailed story in this simulation is described as follows;

0 | 600 generations

At �rst, the game started with the size of anti-tc increasing, because the payo� of anti-tc was more

than that of tc. Following this situation, all local governments immediately raised the penalties. Thus

the factories couldn't get the enough payo� even if they participate in any anti-tc.

600 | 800 generations

In these generations, we could observe �rst the size of tc exceeding that of anti-tc in lake 3. According

to the successful construction of tc, the average payo� of all factories started to increase. Following

this situation, the size of anti-tc in lake 3, namely free-loaders, increased soon. As a result, the size

of tc in lake 3 became to zero. We can �nd that this short story of lake 3 quite resembles the story of

the original game model.



Tomohisa Yamashita, Keiji Suzuki and Azuma Ohuchi 385

800 | 2100 generations

After the successful coalition formation and its collapsing, small anti-tcs appeared on each lake and the

other factories went to opt-out. Only government 3 tried to change the situation by varying penalty

(Fig.12). However, this change only caused the participation rate in anti-tc to temporary increased at

the expense of opt-out (Fig.10). The averaged payo� of all players stayed low during these generations,

since the payo� from anti-tc and the payo� from opt-out was nearly equal (Fig.11).

2100 | 3500 generations

Almost all factories withdrew from lake 1 and lake 2 (Fig.8, Fig.9). They moved to opt-out and

lake 3. From this period, the factories on lake 3 came to form tc gradually. At generation 2700, a

whole coalition that all factories participate in is successively formed (Fig.10). Even when the free-

loaders appeared around in 3000 generation, the whole coalition recovered and remained during these

generations. Therefore, the average payo� of the factories reached its maximum value (Fig.11).

3500 | 4300 generations

In previous generations, while the successful coalition was being formed, the pollution rate of lake 3

grew. Therefore, tc collapsed at generation 3500 (Fig.10). From this generation to the end of this

period, all factories and governments seem to fall into confusion. For example, tc was emerged in lake

3 at one point, however the coalition immediately lost. Then anti-tc in each lake and opt-out were

increased in turn.

4300 | 5900 generation

At end of the previous period, over the half of factories chose to opt-out. From this situation, all

factories tried to make tc in each lake. However, the pollution rate in lake 3 was lower than other

lakes, tc in lake 3 had grown faster than other tcs. Therefore, the tc in lake 3 absorbed all factories and

a whole coalition formed again. Here, whole coalition formation also means the pollution rate rising

rapidly similar to the previous whole coalition formation. Thus, the whole coalition in lake 3 broke

down at generation 4700 and half of factories moved to anti-tc in other lakes. Although the coalition

in lake 3 had halved in size, factories remaining in the coalition kept successfully until generation

5900.

5900 - 7000 generation

At generation 5900, the pollution rate became too high to keep the coalition in lake 3. Therefore, not

only tc but also anti-tc disappeared from lake 3 even if the government 3 was decreasing the penalty.

Some of the factories operating on lake 3 moved to other lakes. However, these factories moved again

to opt-out since the both governments of lake 1 and lake 2 were keeping high penalties to the end of

this period. Thus, the number of opt-out reached to maximum number in this simulation.

5.3 Discussion

By increasing the number of lakes from one to three, a complex coalition formative process, which

includes whole coalition formation, can be observed. This phenomenon does not occur in case of one

lake. Therefore, we can con�rm that the agent based coalition formative process works well under the

competition between the local governments.

In this game model, it is obvious that the average payo� of all factories will increase when tcs are

formed. Concerning local government, we set that the objective of it is to maximize its revenue by

levying a tax and imposing a penalty. Therefore, the average payo� of the local government doesn't

depend on whether factories can form tc or not. However, not only the average payo� of all factories

but also that of local governments increased in this simulation like as follows.
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case of one lake the average payo� 6,067

case of three lakes the average payo� of government 1 8,977

the average payo� of government 2 9,740

the average payo� of government 3 5,398

the sum of average payo� of

three local governments 24,114

the average payo� of governments 8,038

Why does the payo� of the factories and the governments increase? The increase of the payo�

of the factories is obviously caused by tc formed. For the government, the increase of their payo� is

mainly caused by the decrease of opt-out. In the case of one lake, the government can behave sel�shly

because it is just a monopoly. In the case of three lakes, the local governments have to compete with

each other for getting the factories to operate on their lakes. This competitive situation seems to

prevent the governments taking more payo� because they can't get the high revenue by simply raising

the taxes and the penalties. If the governments raise the taxes and the penalties inde�nitely, the

factories on their lakes will move to other lakes and they may not select the lake again. On the other

hand, even if the local government reduce the tax and the penalty to collect the factories, the behavior

of this government isn't communicated to the factories in other places in this game model. Therefore,

the remaining possibility for the government to increase the payo� under competition may be to

exploit the dynamics of the coalition formative process around the multiple lakes. The exploitation

of the dynamics of the coalition formative process are suggested in the simulation as follows.

In these simulations, we have observed that imposing of high penalty value has no inuence on

making tc in any situation. The results of two simulations showed that the factories prefer to select

opt-out, in spite of its payo� being always low, rather than participate in any coalitions. For example,

less than twenty factories select anti-tc in the single lake model and others select opt-out. This is

reason why the payo� of opt-out is same as the payo� of anti-tc when a maximum penalty is imposed

by the local government. Therefore the local government in the single lake model will acquire the

average payo� 6000 from the small anti-tc. To grow the size of coalitions, the payo� for the factories

needs to exceed the payo� of small anti-tc. In this game model, only in the case of that more than

�fty factories participate in tc will the payo� exceed that of anti-tc. Therefore the local government in

the single lake model has no ability to produce the such a tc by blocking the existence of the certain

size of anti-tc.

In the case of the multiple lake simulation, similarly, when three local governments keep maximum

penalties, less than twenty factories select opt-out and the others participate in anti-tc. In this

simulation, tc emerged sometimes on the lake 3 when the lake has no blocking coalitions to form

tc. Once tc is formed, the size of tc increases rapidly because the payo� of tc is higher than that of the

anti-tc which has a high penalty imposed. Therefore, in summary, the dynamics of coalition formative

process with su�cient number of lakes can decrease the size of anti-tc as blocking coalitions in each

lake and help the emergence of tc.

6 Conclusion

We proposed the game model extending \The Lake" as an agent based iterated coalition formative

game. To extend this game model, we introduced \local government" as new player, multiple lakes,

the pollution rate, the move cost and the strategy to opt-out into this game.

Throughout the simulations comparing the single lake model and the multiple lake model, we

can con�rm that the agent based coalition formative process in the multiple lake model worked well.

Especially, the dilemma situation of the local government makes them exploit and help the dynamics

of coalition formative process to form the desired coalitions.

Further development will be required to understand the complex of coalition formative process

based on such type of simulations.
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