
Visualizing the escape paths of quaternion fractals

S. Halayka∗

September 24, 2018

Abstract

The escape paths of the points in some quaternion fractal sets are visualized.

1 Escape paths that do not reach infinity

As discussed in [1], a 3D scalar field of quaternion magnitudes (e.g. |Z|) results from cal-
culating a quaternion fractal set when using a finite 3D lattice of regularly spaced points as
input.

Here we will visualize the escape paths for those points that maintain a quaternion
magnitude less than the infinity threshold value (e.g. 4.0) during the iteration process (e.g.
8 iterations).

The notion that the escape paths can make for nice visualizations was independently
found by Paul Bourke [2]. Bourke’s work was inspired by the Buddhabrot. Bourke’s work
focuses on the escape paths that reach infinity, whereas here we will focus on escape paths
that do not reach infinity.

Here we will use Bezier curves and cylinders to draw the escape paths. The length of
these ‘shaggy’ escape paths will be shortened to only 20% of the total length, giving the
impression of an isotropic buzz cut.

Ultra high definition versions of the figures given in this paper can be found at [3].

∗sjhalayka@gmail.com

1

2 Core C++ code

The C++ code to get a point along a Bezier curve, given by iforce2d on stackoverflow.com,
is:

vec to r 3 g e t b e z i e r p o i n t (vector<vector 3> points , const f loat t)
{

int i = po in t s . s i z e () − 1 ;

while (i > 0)
{

for (int k = 0 ; k < i ; k++)
{

po in t s [k] . x += t ∗ (po in t s [k + 1] . x − po in t s [k] . x) ;
po in t s [k] . y += t ∗ (po in t s [k + 1] . y − po in t s [k] . y) ;
po in t s [k] . z += t ∗ (po in t s [k + 1] . z − po in t s [k] . z) ;

}

i−−;
}

return po in t s [0] ;
}

The C++ code for drawing a cylinder in OpenGL 1.x, given by jyk on gamedev.net, is:

stat ic const f loat rad to deg = 180 .0 f / p i ;

v e c t o r 3 l i n e = pos [i] [j + 1] − pos [i] [j] ;

glPushMatrix () ;

g lT r an s l a t e f (pos [i] [j] . x , pos [i] [j] . y , pos [i] [j] . z) ;

const f loat l i n e l e n = l i n e . l ength () ;
l i n e . normal ize () ;

f loat yaw = 0.0 f ;

i f (f a b s f (l i n e . x) < 0.00001 && f ab s f (l i n e . z) < 0 .00001)
yaw = 0.0 f ;

else
yaw = atan2f (l i n e . x , l i n e . z) ;

f loat p i t ch = −atan2f (l i n e . y , s q r t f (l i n e . x∗ l i n e . x + l i n e . z∗ l i n e . z)) ;

g lRota t e f (yaw∗ rad to deg , 0 . 0 f , 1 . 0 f , 0 . 0 f) ;
g lRota t e f (p i t ch ∗ rad to deg , 1 . 0 f , 0 . 0 f , 0 . 0 f) ;

g luCy l inder (g lu ob j , 0 . 005 , 0 . 005 , l i n e l e n , 20 , 2) ;

glPopMatrix () ;

2

Figure 1: Z ′ = Z2 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2.

3

Figure 2: Z ′ = Z3 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2.

4

Figure 3: ‘Pinhead’: Z ′ = Z4 + C, where Cxyzw = 0.3, 0.5, 0.4, 0.2.

5

Figure 4: Z ′ = Z5 + C , where Cxyzw = 0.3, 0.5, 0.4, 0.2.

6

Figure 5: Z ′ = sin(Z) + C · sin(Z), where Cxyzw = 0.3, 0.5, 0.4, 0.2.

7

References

[1] Halayka S. Some visually interesting non-standard quaternion fractal sets Chaos, Solitons
& Fractals Vol. 41, Issue 5

[2] Bourke P. http://paulbourke.net/fractals/trajectories/

[3] Halayka S. https://drive.google.com/uc?id=1G0xnkXQa0Rc3bv0Bxih4VYU0lj-RJI4G&
export=download

8

