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Abstract 

 
 

We present an algorithm that randomly places simple shapes (circles, squares, triangles, and others) without overlap 
in two dimensions.  We describe the mathematics of the process in detail with some conjectures about its properties.  
The distribution of the areas of the shapes is a power law with varying exponents (typically around -1.3 for visual 
art).  When the algorithm continues "to infinity" it fills all space, while the shapes have an infinite total perimeter.  
We show several uses of this algorithm to produce visual art. 

 
An Illustration 

 
A picture is worth ten thousand words 

-- Confucius (?) 
 

 
 

Figure 1: 5000 nonoverlapping fractal circles.  The random colors provide the high contrast needed to 
see the full detail of the image.  The successive circle areas decrease by a power law, while their 

placement is by random search.  Such processes have been found to apply to a wide variety of geometric 
shapes, and in the limit will completely fill all space if properly set up.   The image shows the property of 

"statistical self-similarity", reproducing the same distribution of circle sizes at all length scales. 



 
Statistical Geometry 

 
Geometry studies the spatial arrangements of shapes (lines, polygons, circles, ...). 

 
"Statistical" and "geometry" are words not usually seen together, so some explanation of this little-
explored subject is called for. 

 
Geometry is a huge and ancient subject.  Certain branches of geometry have been much used in art and 
decoration.  Tilings of the plane go back a long way, are pleasing to the eye, and have been especially 
prominent in Islamic art and decoration.  Plane tilings pose the question "How do you fill the plane 
without gaps using a limited number of geometric shapes?" ― typically polygons bounded by straight 
lines.  The result is a pattern which covers a bounded region with a finite number of shapes. 

 
A related area of geometry is that of "packings" -- incomplete or maximally-dense filling of a region by 
circles and other simple shapes.  Circle packings alone have a large mathematical literature.  The usual 
rule in circle packings is that one finds a set of circles which all touch (are tangent to) each other. Such 
tangent packings are called "Appolonian" after the ancient Greek mathematician Appolonius of Perga 
who first described such a pattern.  Such packings don't fill the whole region.  These packings have seen 
relatively little use in art.  The packings of interest here are non-Appolonian and violate the rules of 
formal mathematical circle packing. 

 
Traditional decorative geometric patterns are models of order and regularity, with every shape having an 
exact location and no elements of randomness. 

 
One might ask: "Can you cover a bounded region with an infinite number of regular shapes?"  Several 
examples of this are known, such as the Sierpinski carpet [1], but they have found little use in art, perhaps 
because their appearance is not particularly attractive to the average eye.  Such constructions are largely 
recursive. 

 
The geometric construction described here poses a different question: "How do you cover a bounded 
region non-recursively with an infinite number of ever-smaller randomly-placed simple shapes (triangles, 
squares, circles) such that in the limit they completely fill it?"  Despite much searching, I have not found 
any prior account of such an algorithm. 
 
Geometry is a subject of great exactitude. There are precise rules for edges, angles, and vertices. There is 
no place for randomness or uncertainty. But if you look at the pictures hanging on the wall of an art 
museum what you see combines elements of both randomness and order. A street scene, for example, has 
the regular structures of streets and buildings, and the turbulent swirl of vehicles and pedestrians. There is 
an attractiveness to an image which combines elements of both order and randomness. Nature itself 
combines randomness and order. All oak trees have a regular branching structure which the eye easily 
recognizes. But the details differ from one tree to another in a random way. 
 
The geometry described here would startle Euclid. 
 
Conventional tilings have exact symmetry -- it is one of their charms. The shapes making up the pattern 
have rotation, translation, mirror, and other symmetries. The statistical geometry patterns of interest here 
have individual shapes with symmetry (square, circle, etc.) but there is no symmetry at all in their 
placement. What they do have is what might be called fractal symmetry (or "statistical self-similarity") ― 



a regular progression in the sizes of the shapes. The eye recognizes this kind of symmetry. Apparently 
even untrained observers see this, although they don't know what to call it. 
 

Rules of Construction 
 

Suppose that we have a bounded region of area A. We intend to fill it with similar geometric shapes 
having a sequence of areas A1, A2, ... (to infinity). The areas Ai are to be computed using a mathematical 
rule with no randomness. 

 
The algorithm begins by placing shape A1 somewhere within the region. It then proceeds to generate 
random positions x,y within the region for the following shapes in the sequence, and for each one tests 
whether the given shape An overlaps any previous Am. If it does not overlap, this is a "successful 
placement" and x,y and the size and shape of An are placed in a file and the process repeated for the next 
shape An+1, or else a new trial position is generated. 
 
If the shapes are to completely fill the area A in the limit, it is evident that one must have 
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The area An of the n-th shape is to be chosen according to a mathematical rule. It is evident that the rule 
must be such that the sum above is convergent. The sequence of areas An should follow some ever-smaller 
rule: An = g(n) for the n-th shape. 
 
Many functions obey the obvious requirements: exp(-an), exp(-an2), and power laws 1/nc.   Here a and c 
are parameters which need to be chosen such that Eq. (1) is satisfied.  (The sum in Eq. (1) does not 
converge for all values of c when a power law is used.  See [2] for details.) 
 
If the sum in Eq. (1) is less than A, the region will never be completely filled. If the sum is greater than A, 
the process of seeking random unoccupied positions for ever-smaller shapes will come to a halt at some 
point for lack of space. 
 
Power-law functions An = A1n-c (exponent c) are the only ones which have been found to work in 
computer trials.  Useful c values for art lie between 1 and 2. The "tailing off" of g(n) must be slow enough 
that there is always room in the lacy "gasket" of unoccupied space for another placement. The gasket 
must get narrower at just such a rate that allows this. 
 
For a power law Eq. (1) becomes 
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The sum can be recognized as the series which defines the Riemann zeta function [2] so that 
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where ζ-1( ) is the inverse zeta function.  Thus this process does not have a unique power law exponent, 
but rather an exponent which varies depending on the choice made for the ratio of A1 to total area A. It 
may be that this is the first-ever practical application of the Riemann zeta function. 



 
In the above calculation it is assumed that all shapes will be placed completely inside the bounded area A. 
This is easy to do computationally. Other choices such as periodic or cyclical arrangements are possible 
but so far unexplored. 
 
It has been found that the process also works if the sequence in Eq. (2) does not begin with n = 1, but 
starts with some higher value of n.  Here the Hurwitz zeta function [2] replaces the Riemann zeta 
function. Or one can have various laws for Ai versus i for the first N terms and then go over to a power 
law for n > N, as long as Eq. (1) is satisfied. 
 
The process has been used with circles, squares, nonsquare rectangles, and equilateral triangles. The 
process has been found to run smoothly when set up as described. 
 
By construction the shapes are non-touching (non-Appolonian). With finite-accuracy computing they 
sometimes touch and may even seem to be slightly overlapping in images. This results from finite 
precision and roundoff error. 
 

Observed Properties 
 
The remarks here apply to the case where one starts with n = 1 as in Eq. (2). 
 
This process operates within a very narrow window. For a given choice of A and A1 there is only one 
value of c which works. 
 
It isn't obvious to me why a power law is the unique choice here. Perhaps a rigorous proof of this is 
possible for this simple "model" system. 
 
While the total area of the shapes has been set up to go to a particular limit, the perimeter grows without 
limit as n increases. This is characteristic of fractal sets (e.g., Sierpinski [1]). 
 
It has been found in computational experiments that the process does seem to run on "forever" if a power 
law is used as described above. Sequences of up to 500000 shapes have been computed in this way with 
no sign that the process will quit (but it does slow down a lot). If the process described here is viewed as a 
way of measuring area, it reveals a rather surprising property of space. 
 
The process uses random iterations of x,y to find a successful placement. The total (cumulative) number 
of iterations nit needed follows an increasing power law in n, nit = n0nf, with an exponent f. Study of 
computed data shows that f ≅ c, i.e., the (negative) value of c is the same (within statistical error) as the 
(positive) value of f. (It is not at all obvious to me why this should be so.) Thus there is a smooth and 
regular increase in the average amount of computation for each new shape. This says that the useful (big 
enough) space for placement is going down by a power law since the probability of placement is a 
measure of the available area. This supports the idea that the process will always find a place for a new 
shape "to infinity" in a finite number of iterations. 
 
The following data was found using estimates from computation runs with the stated c values. The mean-
square estimates of f and n0 are thus subject to some uncertainty since we deal with a random process. 

c = 1.15   f = 1.1513   n0=2.70 
c = 1.24   f = 1.2429   n0=8.09 
c = 1.31   f = 1.3038   n0=34.3 

 



The power law for nit does not apply to the first few placements since they are exceptional. Usually 
enough "slack" is left after the initial placement that the algorithm has an artificially easy time for the first 
few placements. As n increases the process goes over more and more to a "steady state". 
 
For a given n, the number of iterations needed can be 1, 2, 3, ... . Study of histograms of these numbers 
shows that for large n the distribution is accurately represented by a decaying exponential function. This 
agrees with the fact that the Poisson distribution goes over to an exponential form when the probability of 
an individual event (here a successful placement) is << 1. 
 
With its lengthy searches over the "back list" of shapes and their positions, this is a very slow and 
inefficient algorithm, although simple and easy to code (less than 50 lines of C code for the central loop). 
Of simple shapes, the square runs fastest. Improved searches should be possible. 
 
One can define a crude measure of the "effective width" of the lacy "gasket" by taking the ratio Agask (the 
original area A with holes cut out for every shape) divided by the perimeter Pgask of all shapes (both 
functions of n, where n is the number of shapes placed). 
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How does this compare with the size of the i-th shape? In the circle case we can define a dimensionless 
ratio b by 
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where diam is the diameter of the n-th circle.  This has been computed using data from a run of the 
algorithm, and also from formulas. Data from a computer run with c = 1.24 is as follows: 

n = 1000   b =  .4197 
n = 2000   b =  .4140 
n = 3000   b =  .4114 
n = 4000   b =  .4096 
n = 5000   b =  .4086 

 
One can see that while b is not quite a constant versus n, it has a very slow variation. A check of this 
versus computation using formulas gave agreement to nearly 4 decimal places (satisfactory in view of 
numerical and statistical accuracy). What this means is that as n increases the "effective width" of the 
gasket falls in step with the size of the shape, which explains why random placements continue to be 
possible all the way "to infinity". 

 
It could be that the weaker variation for large n reflects the approach of the process to "steady state". To 
date it is unclear whether b really passes to a finite limit for large n. 
 
If one just looks at the formulas it is not at all obvious that b should be nearly flat versus n, since it 
contains the divergent perimeter Pgask. (1/diam also grows without limit.) 
 
The great majority of known mathematical fractal patterns are recursive in nature. This one joins the 
small set of nonrecursive fractals. In its randomness it resembles natural fractals such as "the coastline of 
Britain" or "all the islands of the world" discussed by Mandelbrot [1]. 
 



As the algorithm proceeds, one can think of the placement process as being in a "critical state". If the 
exponent c varies even slightly from its precise value for a given A1, the process will not fill all of the 
space available, or it will come to an end when it cannot place another shape. 
 
These patterns can be viewed as tessellations if the reader is willing to extend this idea to an infinite 
number of tiles which cover a given space.  The author knows of no natural objects for which this 
construction could serve as a model, but if the algorithm comes to be known by many people I have little 
doubt that some will be found. 
 
One might think of an empty world in which the first person to arrive stakes out a territory A1. As more 
people arrive they stake out territories A2, A3, ... in the unoccupied part. Eventually the entire area is filled 
by ever-more people occupying ever-smaller territories -- but they never run out of room for another 
territory so peace is preserved. 
 

Conjectures 
 

It would be interesting if it could be shown that the power laws used here are the only laws which work. 
 
It is noted that available data says that the exponents f and c are the same (within statistical error) for 
sequences beginning with 1. It would be interesting if it could be shown that the most probable value or 
the expectation value of f is c in this case. 
 
It would be interesting to clarify the asymptotic behavior of the ratio b defined above as n goes to infinity. 
This problem does not involve randomness since it depends only on nonrandom calculations of the gasket 
area, perimeter, and size versus n. This problem intimately involves (various sets of terms in) the infinite 
series for the zeta function. 
 
The quantity b can be defined for any functional rule Ai = g(i). It can be speculated that near-constancy of 
b as n goes to infinity is a requirement for any successful algorithm of this kind. In fact, by calculating the 
b parameter on-the-fly as the algorithm progresses, it might be possible to develop an "adaptive" choice 
of the next circle size. 
 
The author does not know of any formal scheme for describing the statistical properties and ordering of 
an object of this kind. Statistical physics has a vast body of theory developed by several generations of 
physicists since Boltzmann and Gibbs, but that is lacking here. The physics case is greatly aided by the 
fact that every atom of a given kind is identical to every other. Here the individual elements (shapes) are 
all different. 
 
It would be interesting to determine what classes of shapes can be "fractalized" using this algorithm, and 
what can't. The algorithm works well for a circle or square (low perimeter-to-area ratio). It also works for 
nonsquare rectangles of mixed orientation. It fails to work for the equilateral triangle without additional 
requirements such as opposite orientations at each step (Figure 4). 
 

Examples 
 
One of the problems with images of these patterns is that the placed shapes may so nearly fill the area that 
the eye blends them all into one big blur.  For this reason I have limited the filling factor to 90% or less.  
The background is white.  The author has computed patterns with up to 97% filling factor containing 
500000 shapes.  Further examples can be found at the author's web site [3]. 
 



 
 

Figure 2: 5000 fractal squares.  83% space filling. 
 

 
 

Figure 3: 5000 mixed-orientation fractal rectangles.  2.5 to 1 aspect ratio.  83% space filling. 



In Figure 3 all of the rectangles have the same areas as in Figure 2.  They are elongated with a 2.5 to 1 
aspect ratio, and the "vertical" shapes are gray while the "horizontal" ones are black.  The aspect ratio 
changes each cycle, so that even-numbered shapes are gray and odd-numbered ones black, etc.  The 
reader may note that there is an ordering property here.  If a large gray shape got an early placement in a 
given area, it is surrounded by mostly gray rectangles, etc.  While this is a random process, the 
randomness is constrained by all of the previous placements. 
 

 
 

Figure 4: 2500 fractal equilateral triangles.  88% space filling.  c = 1.4214.  One suggested title for this 
image is "Sierpinski exploded". 

 
Figure 4 shows equilateral triangles.  It is interesting that the algorithm fails (by stopping) if all of the 
triangles have the same orientation.  If the process is modified so that odd numbered triangles are "up 
arrows" while evens are "down arrows" the process works quite well, and that is the case shown here.  
The black triangles are "up arrows" as drawn, and the gray ones "down arrows".  The viewer will note a 
strong ordering here; the immediate neighbors of an "up" are mostly "downs", etc. 
 
Another case studied was "L-shaped" polygons (not shown).  Such a polygon is non-convex and it was 
thought this might make a difference.  The algorithm ran flawlessly. 

 



 
 

Figure 5: Geometric patterns often lend themselves to decorative uses.  This example, with 4000 yin-
yang symbols, should please east Asians.  Happy Chinese New Year!   

 

 
 

Figure 6: Modern life offers a confusing chaos of directions as expressed in this image.  The arrows are 
inscribed at locations of circles.  With more elaborate programming the entire space could be filled with 

arrows. Three random colors and random orientations. 
 

 
 

Figure 7: Numbers have a continuing fascination for mathematicians, gamblers, and anybody who works 
with a computer.  Here we see the 9 digits in a rather squarish font placed at the locations of fractal 

squares.  The colors are chosen by random walk in color space, in the order largest to smallest. Each 
number size has a corresponding color.  The winning lottery number is in here somewhere. 



 

 
 

Figure 8: "The Devil's Checkerboard". In a checkerboard one colors alternating squares of a regular 
grid black or white (or two other colors).  Here the same thing has been done for fractal squares.  The 

largest is black, the second-largest white, in alternation black-white-black- ...  .  The red color is the part 
of the original plane which has not been covered with any squares (the "gasket").  This illustrates the 

random nature of the process, and the regular progression in the areas of the squares.  When the filling 
factor exceeds about 95% the "gasket" becomes difficult to see.. 
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