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Abstract 

This paper introduces a navigable movie player based upon the QuickTime API. Navigable 

does not mean (as in QuickTime VR) that one can only look around within a static image, 

rather one can navigate within a movie. A key application of this is to present interactive 

movie content not just on a flat screen but also within immersive displays, in particular, 

within hemispherical domes. As such the player supports a very general method of mapping 

the source movie projection geometry onto the geometry of the presentation hardware. The 

result is an abstraction of the details of the input movie geometry and the output image 

projection, the exact mapping and navigation mode is contained with a data file rather than 

within the movie player software itself. A description of the player will be presented along 

with details of the mapping between source and destination geometries, and finally a number 

of practical examples. 

 

Introduction 

In 1996 Apple added a number of extensions to the QuickTime movie format1 and 

corresponding support within the QuickTime movie player, these were called “Panoramic 

movies” or QuickTime VR (QTVR). This allowed a cylindrical panoramic image to be 

imbedded within what appeared to be a QuickTime movie, and on opening this movie with 

the QuickTime Player one was presented with a perspective projection. The use could 

interactively (in real time) change the view direction and zoom level. Most panoramic images 

created for QTVR were stitched from multiple camera shots and were therefore usually 

cylindrical projections, 360 degrees horizontally but with a limited vertical field of view. 

While QTVR is able to support spherical panoramic images which capture the entire visual 

field, more recently Apple2 added cubic map support that solves the issues at the poles and is 

also easier to create using computer based modelling and rendering software. Although 

QTVR “movies” appeared as movie icons and were referred to as movies (sometimes even as 

navigable movies) the name was somewhat of an exaggeration since they consisted of just a 

single image captured from one position in space and time. QTVR was really an interactive 

panoramic viewer and although it is possible to click and jump to another discrete position 

and experience a panoramic view from that new position, it is hardly a movie experience. 



Here I present navigable movies in the true sense of the word, that is, one navigates in a 

similar fashion as in a QTVR movie except that instead of navigating within a single image 

one is navigating within a movie! Additionally the approach taken is much more general in 

that while QTVR and similar players present only a perspective view the solution here is 

general enough that it can readily present other projections such as those required for more 

immersive display environments. In particular it supports fisheye projections3 for planetarium 

domes that employ a projector and fisheye lens as well as the warped fisheye images required 

for immersive projection using a spherical mirror4. QTVR is able to accept three source 

projection geometries (cylindrical, spherical, and cubic) and present a single output geometry 

(perspective). The player software introduced here needs to potentially accept any source 

geometry and create any output projection. The different source image geometries and output 

projection are not built into the player but are described by an external file that defines the 

mapping between the input and output image. At the time of writing the player has been used 

to present output views as perspective, fisheye, and warped fisheye. It has been used to accept 

source movie geometries including cylindrical panoramic, spherical panoramic, fisheye, and 

perspective. This last option may seem unusual but, for example, it allows one to zoom and 

pan around within a very high resolution movie while it is playing (see example 4). 

 

Implementation 

The navigable movie player is implemented as a Cocoa application that makes extensive use 

of the QuickTime API. The basic operation involves opening a movie and a warp mesh file, it 

is this mesh file that describes the source geometry and how to create the output view 

projection. Each frame of the movie is considered to be a texture and is mapped onto the 

mesh. Each node of the mesh consists of a position (x,y) in normalised screen coordinates, a 

texture coordinate (u,v), and a multiplicative intensity value. The intensity value can be used 

to correct for variable intensities due to different light paths that arise in some projection 

environments and can support edge blending5 for multiple projector arrangements. The 

warping mesh files are typically created mathematically given an understanding of the 

geometry or by simulation as in the case of the warped fisheye images required for spherical 

mirror projection. 

The position of each mesh node (x,y) is specified in normalised screen coordinates, that is, 

horizontally the range is –aspect to aspect, vertically -1 to 1. The aspect is the ratio of the 

image width to height, aspect ratios in common usage for data projectors are 4:3, 5:4, and 

16:9. From an OpenGL programming point of view this would represent a full window 

display given an orthographic camera as follows: 



glOrtho(-aspect,aspect,-1,1,near,far); 

Normalised screen coordinates are convenient since they are independent of resolution, that 

is, the number of pixels in the display. It does mean that a particular warping map file is 

explicitly linked to an aspect ratio, this isn’t a serious limitation since most warping is aspect 

ratio dependent for other reasons. 

The texture coordinates are defined the same as in most graphical APIs, such as OpenGL. 

They range from 0 to 1 in both directions (u,v) and are therefore independent of the relative 

dimensions or the resolution of the texture image. While the warping can be encapsulated in 

either or both the mesh node positions (x,y) or the texture coordinates (u,v), it is more usual to 

use a regular mesh and encode the warping within the texture coordinates. 

As expected all compression codecs and audio modes supported by the QuickTime API are 

supported in this player. The movie is opened by drag/drop, the warping mesh file can either 

be specified in the preferences or by giving it a specific file name and locating it in the same 

directory as the player application. The only other requirement is the player must be able to 

operate in full screen mode (no menus or window decoration), this is a requirement for data 

projector based environments (see figure 3b). 

 

Navigation 

Navigation is typically implemented by modification of the (u,v) coordinates of the warping 

mesh. For example, rotating left and right within a cylindrical panoramic image is simply a 

matter of adding an offset to the current (u,v) value at each mesh node and ensuring texture 

coordinate wrapping occurs across the interface at the left and right edge of the image. The 

source input image geometry and the output projection determine what forms of navigation 

are appropriate, for example, it is not appropriate to zoom into a hemispherical fisheye 

projection since the result would no longer be a fisheye image. 

 

 Source movie projection Output projection  

   Perspective Fisheye or warped fisheye 

 Perspective (Example 4)  Pan, zoom, roll - 

 Fisheye (Example 3)  Rotate, zoom, roll Roll 

 Cylindrical (Example 2)  Rotate, zoom Rotate, roll 

 Spherical (Example 1)  Rotate, zoom, roll Rotate, roll 
Table 1. Matrix showing navigation modes for each combination of input image projection and output 
projection.  
 



Example 1: Spherical projection 

Figure 1 is an example of a movie where each frame is a spherical projection ranging from 0 

to 360 degrees in longitude and 90 (north pole) to -60 degrees in latitude, captured using the 

LadyBug6 camera (courtesy iCinema7, UNSW). Each frame is 4096 pixels wide by 2048 pixel 

high. Figure 1a is a single frame from this movie, figure 1b is a perspective view presented by 

the player being described here, figure 1c is a fisheye view intended for projection into an 

immersive hemispherical dome using a projector with a fisheye lens. Navigation in the 

fisheye view is (currently) limited to panning left and right, in the perspective view one can 

pan and zoom.  

 
 Figure 1a 

 
 Figure 1b 

 
 Figure 1c 

Figure 1. Example illustrating a spherical projection source movie and a perspective and fisheye output 
projection. 
 

For each combination of source image geometry and output view projection a warping mesh 

file is required. The following illustrates the mapping required to warp a spherical panoramic 

image (figure 1a) to a fisheye (figure 1c), this is one of the more involved mappings.  



 
A polar grid in normalised screen coordinates (on the intended fisheye view window) can be 

defined as follows: 

(x,y) = (r cos(2πi / Ni), r sin(2πi / Ni) 

where r = 1 – j / Nj and 0 ≤ i ≤ Ni, 0 ≤ j ≤ Nj. Ni and Nj are the number of mesh nodes 

horizontally and vertically, or more correctly for this polar mesh, the number of lines of radial 

arms and rings respectively. For a fisheye each (x,y) position on the image plane corresponds 

to a unit 3D vector into the scene, this vector is 

P(x,y,z) = (sin(ψ) cos(θ), cos(ψ), sin(ψ) sin(θ)) 

where ψ = π r / 2 and θ = atan2(Py,Px). Each of these 3D vectors corresponds to a position on 

the spherical panoramic image, normalised to the range (0,1), as such the texture coordinates 

(u,v) are given by 

u = (atan2(Px,Py) + π) / 2π 

v = (atan2(Pz,sqrt(Px
2 + Py

2)) + π/2) / π 

Note the standard maths library function atan2() is used above, it returns angles in the range 

[–π, π] hence the scaling for longitude and latitude (u,v) on the expresssion above. 

 

Example 2: Cylindrical projection 

Figure 2 shows a single frame from a movie (Place-Hampi8 © Sarah Kenderdine and Jeffrey 

Shaw 2006) where each frame is a full 360 degree horizontal cylindrical projection with a 

resolution 8000x1000 pixels. The vertical field of view in this case is 43 degrees and the 

mapping for the perspective views has been designed to give the same (maximum) vertical 

field of view.  



 
 Figure 2a 

 
 Figure 2b 

 
 Figure 2c 

Figure 2. Example illustrating a source movie where each frame is a cylindrical projection. Two representative 
output perspective frames are shown, in figure 2c the warping mesh grid (white lines) is also shown.  
 

The mesh grid shown in figure 2c is a 60x40 mesh, typically twice this resolution would be 

used in order to reduce artefacts arising from the technique OpenGL employs to interpolate 

texture fragments across a triangle or quad.. Since the mesh is drawn as triangle or quad strips 

the effect on the performance for modestly high mesh resolutions is negligible. The warping 

mesh shown here is uniform in (x,y) but it need not be, the image warping itself is achieved 

with the (u,v) texture coordinate at each mesh node. 

The warp mesh that maps a portion of a cylindrical image to a perspective projection is best 

formed as a regular rectangular mesh rather than a polar mesh as in the previous example. The 

position of the mesh nodes in the perspective image is then 

 (x,y) = (2 A i / Ni - A, 2 j / Nj – 1) 

where 0 ≤ i ≤ Ni, 0 ≤ j ≤ Nj and A is the aspect ratio of the perspective view, namely the ratio 

of the perspective image width to the height. For each node there is an associated 3D vector 

into the scene 

 P(x,y,z) = (2 (i - Ni/2) tan(Fh/2) / Ni, 1, 2 (j - Nj/2) tan(Fv/2) / Nj) 

Where Fh and Fv are the intended horizontal and vertical fields of view of the perspective 

projection. This vector corresponds to a position on the cylindrical image, normalising that 

gives the texture coordinates (u,v) as follows 

u = (θ + π) / 2π 

 v = (1 + tan(ψ) / tan(Fv/2)) / 2 



where θ = atan2(Py,Px) and ψ = atan2(Pz,sqrt(Px
2 + Py

2). If the vertical field of view of the 

perspective image in intended to match the vertical field of view of the cylindrical panoramic 

image then they are defined as follows: 

 Fv = 2 atan(π Ch / Cw) 

 Fh = 2 atan(A tan(Fv/2)) 

Where Ch and Cw is the height and width of the cylindrical panoramic image respectively. 

 

Example 3: Fisheye projection 

Figure 3 is an example from a cosmological simulation intended for a hemispherical 

planetarium dome. As the simulation evolves the observer is free to rotate the view. The 

output view in figure 3c is intended for projection into a planetarium using a spherical mirror 

where the mirror is located close to the side of the dome. The fading around the rim is to 

compensate for the higher intensity on that part of the dome close to the mirror and is 

implemented with the multiplicative intensity value defined at each of the mesh nodes. The 

warped view in figure 3d is designed for a different hemisphere orientation, namely the 

upright dome as shown in figure 3b.  

While one can write down the equations governing the warping required when using a 

spherical mirror to scatter the light across a wide angle, the equations cannot be readily solved 

in a closed form. The warping maps in this case are derived numerically by tracing rays from 

the data projector, bouncing them off the spherical mirror, and seeing where they strike the 

final projection surface and thus their (u,v) coordinates on the source fisheye image. This 

numerical simulation is performed with a precise knowledge of the geometric and optical 

properties of the hardware components. Any particular installation would conduct this process 

and derive their warping mesh, content can then be readily shared between the different sites 

and would look correct and undistorted on each installation. 
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 Figure 3d 

Figure 3. Sample fisheye frame (3a), warping for conventional planetarium (3c) and warping for upright dome 
(3d). Figure 3b shows the image in the actual hemispherical environment. 
  

Example 4: Perspective projection 

Figure 4 shows a high resolution perspective projection where one can pan around while the 

movie plays. The dataset is a sufficiently high resolution volumetric dataset from a CAT scan 

that the isosurface generation cannot be performed in realtime at the resolution required. By 

rendering the frames at sufficiently high resolution (larger than the resolution of a display) 

one can zoom in and pan across the image while the isosurface value changes, effectively 

viewing any isosurface value in detail from any position on a plane. 



 
Figure 4a 

 
Figure 4b 

 
Figure 4c 

 
Figure 4d 

Figure 4. Large format perspective movie, one frame shown in (4a). Sample zoomed in frames at different times 
and different positions (4b 50%, 4c 25%, 4d 25%). 
 

Conclusion and future work 

A true navigable movie player has been demonstrated that implements a very general image 

mapping/warping algorithm. Within reason this allows movies made up of frames with an 

arbitrary image geometry to be mapped onto arbitrary view projections. To date warping map 

files have been created for cylindrical and spherical panoramic, fisheye, orthographic and 

perspective projections. A more exotic warping is required for an increasingly popular 

projection system for planetariums and other immersive environments, namely the use of a 

low cost spherical mirror instead of a fisheye lens. 

Future work includes extending the existing player to support various stereoscopic modes, not 

just standard perspective stereoscopic pairs but also stereoscopic panoramic9 and fisheye 

movies. 

 

Acknowledgement to Ian Hooper for the Cocoa implementation based upon largely imprecise 
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surround video footage. 

 



Appendix: Mapping file format 

The format of the mapping file is relatively straightforward and is a human readable text only 

file. There is a two line header, first line of which contains a single number that defines the 

source image/movie projection geometry, a warp map is always defined with respect to a 

particular input projection. The projection types currently defined are  

1: planar/perspective image 
2: fisheye projection 
3: cylindrical panorama 
4: spherical panorama 
5: stereoscopic pair (only partially implemented at the time of writing). 

The second line of the header contains the horizontal and vertical dimensions (Ni,Nj) of the 

mesh. The subsequent Ni x Nj lines describe the mesh nodes, each consists of 5 numbers: 

x,y,u,v,i. They are listed in row order, that is, the nodes for the first row are listed first, then 

the second row, and so on until the last row of mesh. Note that the mesh need not be a regular 

rectangular mesh but it does need to be topologically rectangular. A polar mesh can equally 

be described and is often a more natural mesh format for circular projections. 
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