

Given the vertices of a box (axis aligned) $P_{0} \ldots P_{7}$ and a point to be remapped P, find the relative positions along each side $U=\left(u_{x}, u_{y}, u_{z}\right)$. Each component of U will be between 0 and 1 for a point P within box, less than 0 or greater than 1 for a point P outside the box. For a unit cube with P0 at the origin then $U=P$.

Given the vertices of the warped cube $Q_{0} \ldots Q_{7}$ then to find the position Q corresponding to P first find the vertices of the plane $Q_{a}, Q_{b}, Q_{c}, Q_{d}$ using u_{x}. Then find the ends of the line Q_{e} and Q_{f} on that plane using u_{y}. Finally find the position Q along that line using u_{z}.

$$
\begin{aligned}
& Q_{a}=Q_{0}+u_{x}\left(Q_{1}-Q_{0}\right) \\
& Q_{b}=Q_{2}+u_{x}\left(Q_{3}-Q_{2}\right) \\
& Q_{c}=Q_{6}+u_{x}\left(Q_{7}-Q_{6}\right) \\
& Q_{d}=Q_{4}+u_{x}\left(Q_{5}-Q_{4}\right) \\
& Q_{e}=Q_{a}+u_{y}\left(Q_{d}-Q_{a}\right) \\
& Q_{f}=Q_{b}+u_{y}\left(Q_{c}-Q_{b}\right) \\
& Q=Q_{e}+u_{z}\left(Q_{f}-Q_{e}\right)
\end{aligned}
$$

